Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 597915, 10 pages
http://dx.doi.org/10.1155/2012/597915
Review Article

Angiogenic Signalling Pathways Altered in Gliomas: Selection Mechanisms for More Aggressive Neoplastic Subpopulations with Invasive Phenotype

1Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Nursing I, University of the Basque Country, 48940 Leioa, Spain
2Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, University of the Basque Country, Leioa, P.O. Box 699, 48080 Bilbao, Spain
3Unit of Anatomy, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland

Received 7 February 2012; Accepted 22 May 2012

Academic Editor: Laura Cerchia

Copyright © 2012 Susana Bulnes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kleihues, P. C. Burger, K. D. Aldape et al., “Glioblastoma,” in WHO Classification of Tumours of the Central Nervous System, D. N. Louis, H. Ohgaki, O. D. Wiestler, and W. K. Cavenee, Eds., pp. 33–49, Agency for Research on Cancer (IARC), Lyon, France, 2007. View at Google Scholar
  2. G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nature Reviews Cancer, vol. 3, no. 6, pp. 401–410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, no. 6801, pp. 249–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature, vol. 407, no. 6801, pp. 242–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Carmeliet, “Angiogenesis in health and disease,” Nature Medicine, vol. 9, no. 6, pp. 653–660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Risau, “Mechanisms of angiogenesis,” Nature, vol. 386, no. 6626, pp. 671–674, 1997. View at Google Scholar · View at Scopus
  7. J. Folkman, “Angiogenesis,” Annual Review of Medicine, vol. 57, pp. 1–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. H. Wong, A. Prawira, A. H. Kaye, and C. M. Hovens, “Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas,” Journal of Clinical Neuroscience, vol. 16, no. 9, pp. 1119–1130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. L. Jensen, “Hypoxia in the tumorigenesis of gliomas and as a potential target for therapeutic measures,” Neurosurgical Focus, vol. 20, no. 4, p. E24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. H. Fong, “Mechanisms of adaptive angiogenesis to tissue hypoxia,” Angiogenesis, vol. 11, no. 2, pp. 121–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Jin, Y. Zhu, Y. Sun, X. O. Mao, L. Xie, and D. A. Greenberg, “Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11946–11950, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H. J. H. Marti, M. Bernaudin, A. Bellail et al., “Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia,” American Journal of Pathology, vol. 156, no. 3, pp. 965–976, 2000. View at Google Scholar · View at Scopus
  13. G. L. Semenza, “Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics,” Oncogene, vol. 29, no. 5, pp. 625–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Bengoetxea, E. G. Argandoña, and J. V. Lafuente, “Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex,” Cerebral Cortex, vol. 18, no. 7, pp. 1630–1639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. L. R. Ment, W. B. Stewart, R. Fronc et al., “Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain,” Developmental Brain Research, vol. 100, no. 1, pp. 52–61, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Bulnes and J. V. Lafuente, “VEGF immunopositivity related to malignancy degree, proliferative activity and angiogenesis in ENU-induced gliomas,” Journal of Molecular Neuroscience, vol. 33, no. 2, pp. 163–172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. V. Lafuente, B. Adán, K. Alkiza, J. M. Garibi, M. Rossi, and F. F. Cruz-Sánchez, “Expression of vascular endothelial growth factor (VEGF) and platelet- derived growth factor receptor-β (PDGFR-β) in human gliomas,” Journal of Molecular Neuroscience, vol. 13, no. 1-2, pp. 177–185, 1999. View at Google Scholar · View at Scopus
  19. K. H. Plate, “Mechanisms of angiogenesis in the brain,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 4, pp. 313–320, 1999. View at Google Scholar · View at Scopus
  20. B. Millauer, S. Wizigmann-Voos, H. Schnurch et al., “High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis,” Cell, vol. 72, no. 6, pp. 835–846, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Ortuzar, E. G. Argandoña, H. Bengoetxea, and J. V. Lafuente, “Combination of intracortically administered VEGF and environmental enrichment enhances brain protection in developing rats,” Journal of Neural Transmission, vol. 118, no. 1, pp. 135–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Rosenstein and J. M. Krum, “New roles for VEGF in nervous tissue—beyond blood vessels,” Experimental Neurology, vol. 187, no. 2, pp. 246–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Storkebaum, D. Lambrechts, and P. Carmeliet, “VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection,” BioEssays, vol. 26, no. 9, pp. 943–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Bao, Q. Wu, R. E. McLendon et al., “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response,” Nature, vol. 444, no. 7120, pp. 756–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Heddleston, Z. Li, R. E. McLendon, A. B. Hjelmeland, and J. N. Rich, “The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype,” Cell Cycle, vol. 8, no. 20, pp. 3274–3284, 2009. View at Google Scholar · View at Scopus
  26. Z. Li. Z., H. Wang, C. E. Eyler, A. B. Hjelmeland, and J. N. Rich, “Turning cancer stem cells inside out: an exploration of glioma stem cells signalling pathways,” The Journal of Biological Chemistry, vol. 284, no. 25, pp. 16705–16709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Bulnes-Sesma, N. Ullibarri-Ortiz De Zárate, and J. V. Lafuente-Sánchez, “Tumour induction by ethylnitrosourea in the central nervous system,” Revista de Neurologia, vol. 43, no. 12, pp. 733–738, 2006. View at Google Scholar · View at Scopus
  28. P. E. Kish, M. Blaivas, M. Strawderman et al., “Magnetic resonance imaging of ethyl-nitrosourea-induced rat gliomas: a model for experimental therapeutics of low-grade gliomas,” Journal of Neuro-Oncology, vol. 53, no. 3, pp. 243–257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. P. L. Lantos, “Development of nitrosourea-induced brain tumours—with a special note on changes occurring during latency,” Food and Chemical Toxicology, vol. 24, no. 2, pp. 121–127, 1986. View at Google Scholar · View at Scopus
  30. D. Schiffer, L. Annovazzi, V. Caldera, and M. Mellai, “On the origin and growth of gliomas,” Anticancer Research, vol. 30, no. 6, pp. 1977–1998, 2010. View at Google Scholar · View at Scopus
  31. D. M. Kokkinakis, E. J. Rushing, M. M. Shareef et al., “Physiology and gene expression characteristics of carcinogen-initiated and tumor-transformed glial progenitor cells derived from the CNS of methylnitrosourea (MNU)-treated Sprague-Dawley rats,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 11, pp. 1182–1199, 2004. View at Google Scholar · View at Scopus
  32. N. Ferrara, “Vascular endothelial growth factor: basic science and clinical progress,” Endocrine Reviews, vol. 25, no. 4, pp. 581–611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. F. S. Grünewald, A. E. Prota, A. Giese, and K. Ballmer-Hofer, “Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling,” Biochimica et Biophysica Acta, vol. 1804, no. 3, pp. 567–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. H. F. Dvorak, “Discovery of vascular permeability factor (VPF),” Experimental Cell Research, vol. 312, pp. 522–526, 2006. View at Google Scholar
  35. N. Ferrara, “The role of VEGF in the regulation of physiological and pathological angiogenesis,” EXS, no. 94, pp. 209–231, 2005. View at Google Scholar · View at Scopus
  36. J. V. Lafuente, S. Bulnes, B. Mitre, and H. H. Riese, “Role of VEGF in an experimental model of cortical micronecrosis,” Amino Acids, vol. 23, no. 1–3, pp. 241–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Helmlinger, M. Endo, N. Ferrara, L. Hlatky, and R. K. Jain, “Growth factors: formation of endothelial cell networks,” Nature, vol. 405, no. 6783, pp. 139–141, 2000. View at Google Scholar · View at Scopus
  38. T. Tonini, F. Rossi, and P. P. Claudio, “Molecular basis of angiogenesis and cancer,” Oncogene, vol. 22, no. 43, pp. 6549–6556, 2003. View at Google Scholar · View at Scopus
  39. D. Zagzag, D. R. Friedlander, B. Margolis et al., “Molecular events implicated in brain tumor angiogenesis and invasion,” Pediatric Neurosurgery, vol. 33, no. 1, pp. 49–55, 2000. View at Google Scholar · View at Scopus
  40. B. Kaur, F. W. Khwaja, E. A. Severson, S. L. Matheny, D. J. Brat, and E. G. Van Meir, “Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis,” Neuro-Oncology, vol. 7, no. 2, pp. 134–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. L. D. Ke, Y. X. Shi, S. A. Im, X. Chen, and W. K. A. Yung, “The relevance of cell proliferation, vascular endothelial growth factor, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell lines,” Clinical Cancer Research, vol. 6, no. 6, pp. 2562–2572, 2000. View at Google Scholar · View at Scopus
  42. P. Baluk, H. Hashizume, and D. M. M, “Cellular abnormalities of blood vessels as targets in cancer,” Current Opinion in Genetics and Development, vol. 15, no. 1, pp. 102–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Hashizume, P. Baluk, S. Morikawa et al., “Openings between defective endothelial cells explain tumor vessel leakiness,” American Journal of Pathology, vol. 156, no. 4, pp. 1363–1380, 2000. View at Google Scholar · View at Scopus
  44. J. Holash, P. C. Maisonpierre, D. Compton et al., “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science, vol. 284, no. 5422, pp. 1994–1998, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Zagzag, H. Zhong, J. M. Scalzitti, E. Laughner, J. W. Simons, and G. L. Semenza, “Expression of hypoxia-inducible factor 1α in brain tumors: association with angiogenesis, invasion, and progression,” Cancer, vol. 88, no. 11, pp. 2606–2618, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Blouw, H. Song, T. Tihan et al., “The hypoxic response of tumors is dependent on their microenvironment,” Cancer Cell, vol. 4, no. 2, pp. 133–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. O. Méndez, J. Zavadil, M. Esencay et al., “Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres,” Molecular Cancer, vol. 9, article 133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Sullivan and C. H. Graham, “Hypoxia-driven selection of the metastatic phenotype,” Cancer and Metastasis Reviews, vol. 26, no. 2, pp. 319–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. K. L. Jin, X. O. Mao, T. Nagayama, P. C. Goldsmith, and D. A. Greenberg, “Induction of vascular endothelial growth factor and hypoxia-inducible factor-1α by global ischemia in rat brain,” Neuroscience, vol. 99, no. 3, pp. 577–585, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Vajkoczy, M. Farhadi, A. Gaumann et al., “Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2,” The Journal of Clinical Investigation, vol. 109, no. 6, pp. 777–785, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. R. H. Wenger and M. Gassmann, “Oxygen(es) and the hypoxia-inducible factor-1,” Biological Chemistry, vol. 378, no. 7, pp. 609–616, 1997. View at Google Scholar · View at Scopus
  52. M. H. Yang and K. J. Wu, “TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development,” Cell Cycle, vol. 7, no. 14, pp. 2090–2096, 2008. View at Google Scholar · View at Scopus
  53. M. S. Wiesener, J. S. Jürgensen, C. Rosenberger et al., “Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs,” The FASEB Journal, vol. 17, no. 2, pp. 271–273, 2003. View at Google Scholar · View at Scopus
  54. W. Chen, R. P. Ostrowski, A. Obenaus, and J. H. Zhang, “Prodeath or prosurvival: two facets of hypoxia inducible factor-1 in perinatal brain injury,” Experimental Neurology, vol. 216, no. 1, pp. 7–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. C. E. Griguer, C. R. Oliva, E. Gobin et al., “CD133 is a marker of bioenergetic stress in human glioma,” PLoS ONE, vol. 3, no. 11, Article ID e3655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Heddleston, Z. Li, J. D. Lathia, S. Bao, A. B. Hjelmeland, and J. N. Rich, “Hypoxia inducible factors in cancer stem cells,” British Journal of Cancer, vol. 102, no. 5, pp. 789–795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Li, S. Bao, Q. Wu et al., “Hypoxia-inducible factors regulate tumourigenic capacity of glioma stem cells,” Cancer Cell, vol. 15, no. 6, pp. 501–513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. E. E. Bar, A. Lin, V. Mahairaki, W. Matsui, and C. G. Eberhart, “Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres,” American Journal of Pathology, vol. 177, no. 3, pp. 1491–1502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Pistollato, S. Abbadi, E. Rampazzo et al., “Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma,” Stem Cells, vol. 28, no. 6, pp. 851–862, 2010. View at Google Scholar · View at Scopus
  60. C. Folkins, Y. Shaked, S. Man et al., “Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1,” Cancer Research, vol. 69, no. 18, pp. 7243–7251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Dell'Albani, “Stem cell markers in gliomas,” Neurochemical Research, vol. 33, no. 12, pp. 2407–2415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Jang, N. S. Litofsky, T. W. Smith, A. H. Ross, and L. D. Recht, “Aberrant nestin expression during ethylnitrosourea-(ENU)-induced neurocarcinogenesis,” Neurobiology of Disease, vol. 15, no. 3, pp. 544–552, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. C. G. Hadjipanayis and E. G. Van Meir, “Brain cancer propagating cells: biology, genetics and targeted therapies,” Trends in Molecular Medicine, vol. 15, no. 11, pp. 519–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Germano, V. Swiss, and P. Casaccia, “Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?” Neuropharmacology, vol. 58, no. 6, pp. 903–910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. T. N. Ignatova, V. G. Kukekov, E. D. Laywell, O. N. Suslov, F. D. Vrionis, and D. A. Steindler, “Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro,” Glia, vol. 39, no. 3, pp. 193–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. H. D. Mennel, N. Kosse, J. T. Heverhagen, and H. Alfke, “Primary and transplanted ENU induced rat tumors in neurooncology,” Experimental and Toxicologic Pathology, vol. 56, no. 1-2, pp. 25–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. B. C. Zook and S. J. Simmens, “Neurogenic tumors in rats induced by ethylnitrosourea,” Experimental and Toxicologic Pathology, vol. 57, no. 1, pp. 7–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. W. Slikker, N. Mei, and T. Chen, “N-ethyl-N-nitrosourea (ENU) increased brain mutations in prenatal and neonatal mice but not in the adults,” Toxicological Sciences, vol. 81, no. 1, pp. 112–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. D. S. Beniashvili and V. N. Anisimov, “Morphology of experimentally induced tumors of the sympathetic nervous system in rats,” Experimental and Toxicologic Pathology, vol. 56, no. 1-2, pp. 53–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Bulnes, J. Bilbao, and J. V. Lafuente, “Microvascular adaptive changes in experimental endogenous brain gliomas,” Histology and Histopathology, vol. 24, no. 6, pp. 693–706, 2009. View at Google Scholar · View at Scopus
  71. N. Almog, “Molecular mechanisms underlying tumor dormancy,” Cancer Letters, vol. 294, no. 2, pp. 139–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Almog, L. Ma, R. Raychowdhury et al., “Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype,” Cancer Research, vol. 69, no. 3, pp. 836–844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Korkolopoulou, E. Patsouris, N. Kavantzas et al., “Prognostic implications of microvessel morphometry in diffuse astrocytic neoplasms,” Neuropathology and Applied Neurobiology, vol. 28, no. 1, pp. 57–66, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Baeriswyl and G. Christofori, “The angiogenic switch in carcinogenesis,” Seminars in Cancer Biology, vol. 19, no. 5, pp. 329–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Bulnes, E. G. Argandoña, H. Bengoetxea, O. Leis, N. Ortuzar, and J. V. Lafuente, “The role of eNOS in vascular permeability in ENU-induced gliomas,” Acta Neurochirurgica. Supplement, vol. 106, pp. 277–282, 2010. View at Google Scholar · View at Scopus
  76. N. M. Mazure, E. Y. Chen, K. R. Laderoute, and A. J. Giaccia, “Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element,” Blood, vol. 90, no. 9, pp. 3322–3331, 1997. View at Google Scholar · View at Scopus
  77. S. Bulnes, Á. García-Blanco, H. Bengoetxea, N. Ortuzar, E. G. Argandoña, and J. V. Lafuente, “Glial stem cells and their relationship with tumour angiogenesis process,” Revista de Neurologia, vol. 52, no. 12, pp. 743–750, 2011. View at Google Scholar · View at Scopus
  78. S. Bulnes, H. Bengoetxea, N. Ortuzar, E. G. Argandoña, and J. V. Lafuente, “Endogenous experimental glioma model, links between glioma stem cells and angiogenesis,” in Glioma—Exploring Its Biology and Practical Relevance, A. Ghosh, Ed., InTech, 2011. View at Google Scholar
  79. F. Zeppernick, R. Ahmadi, B. Campos et al., “Stem cell marker CD133 affects clinical outcome in glioma patients,” Clinical Cancer Research, vol. 14, no. 1, pp. 123–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. C. Tate and M. K. Aghi, “Biology of Angiogenesis and Invasion in Glioma,” Neurotherapeutics, vol. 6, no. 3, pp. 447–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Calabrese, H. Poppleton, M. Kocak et al., “A perivascular niche for brain tumour stem cells,” Cancer Cell, vol. 11, no. 1, pp. 69–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. R. J. Gilbertson and J. N. Rich, “Making a tumour's bed: glioblastoma stem cells and the vascular niche,” Nature Reviews Cancer, vol. 7, no. 10, pp. 733–736, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Borovski, J. J. C. Verhoeff, R. Ten Cate et al., “Tumor microvasculature supports proliferation and expansion of glioma-propagating cells,” International Journal of Cancer, vol. 125, no. 5, pp. 1222–1230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Ruoslahti, “Specialization of tumour vasculature,” Nature Reviews Cancer, vol. 2, no. 2, pp. 83–90, 2002. View at Google Scholar · View at Scopus
  85. R. D. Folkerth, “Histologic measures of angiogenesis in human primary brain tumors,” Cancer Treatment and Research, vol. 117, pp. 79–95, 2004. View at Google Scholar · View at Scopus
  86. N. Ferrara, “Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action,” Molecular Biology of the Cell, vol. 21, no. 5, pp. 687–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. M. C. Tate and M. K. Aghi, “Biology of angiogenesis and invasion in glioma,” Neurotherapeutics, vol. 6, no. 3, pp. 447–457, 2009. View at Publisher · View at Google Scholar · View at Scopus