Table of Contents
Journal of Signal Transduction
Volume 2012 (2012), Article ID 619747, 11 pages
http://dx.doi.org/10.1155/2012/619747
Review Article

The Role of HCN Channels on Membrane Excitability in the Nervous System

1Department of Information Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan
2School of Life Sciences, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8787, Japan

Received 20 April 2012; Accepted 19 June 2012

Academic Editor: Junichi Nakai

Copyright © 2012 Daisuke Kase and Keiji Imoto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Noma and H. Irisawa, “Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method,” Pflügers Archiv, vol. 364, no. 1, pp. 45–52, 1976. View at Google Scholar · View at Scopus
  2. H. Brown and D. Difrancesco, “Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node,” Journal of Physiology, vol. 308, pp. 331–351, 1980. View at Google Scholar · View at Scopus
  3. J. Maylie, M. Morad, and J. Weiss, “A study of pace-marker potential in rabbit sino-atrial node: measurement of potassium activity under voltage-clamp conditions,” Journal of Physiology, vol. 311, pp. 161–178, 1981. View at Google Scholar · View at Scopus
  4. C. W. Siu, D. K. Lieu, and R. A. Li, “HCN-encoded pacemaker channels: from physiology and biophysics to bioengineering,” Journal of Membrane Biology, vol. 214, no. 3, pp. 115–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Biel, C. Wahl-Schott, S. Michalakis, and X. Zong, “Hyperpolarization-activated cation channels: from genes to function,” Physiological Reviews, vol. 89, no. 3, pp. 847–885, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. B. Robinson and S. A. Siegelbaum, “Hyperpolarization-activated cation currents: from molecules to physiological function,” Annual Review of Physiology, vol. 65, pp. 453–480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Chen, J. S. Mitcheson, M. Lin, and M. C. Sanguinetti, “Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 36465–36471, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Vaca, J. Stieber, X. Zong, A. Ludwig, F. Hofmann, and M. Biel, “Mutations in the S4 domain of a pacemaker channel alter its voltage dependence,” FEBS Letters, vol. 479, no. 1-2, pp. 35–40, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Männikkö, F. Elinder, and H. P. Larsson, “Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages,” Nature, vol. 419, no. 6909, pp. 837–841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. E. C. Emery, G. T. Young, E. M. Berrocoso, L. Chen, and P. A. McNaughton, “HCN2 ion channels play a central role in inflammatory and neuropathic pain,” Science, vol. 333, no. 6048, pp. 1462–1466, 2011. View at Google Scholar
  11. P. Pian, A. Bucchi, A. DeCostanzo, R. B. Robinson, and S. A. Siegelbaum, “Modulation of cyclic nucleotide-regulated HCN channels by PIP2 and receptors coupled to phospholipase C,” Pflügers Archiv, vol. 455, no. 1, pp. 125–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Khurana, Z. Liu, A. S. Lewis, K. Rosa, D. Chetkovich, and N. L. Golding, “An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision,” The Journal of Neuroscience, vol. 32, no. 8, pp. 2814–2823, 2012. View at Google Scholar
  13. Z. Huang, M. C. Walker, and M. M. Shah, “Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis,” The Journal of Neuroscience, vol. 29, no. 35, pp. 10979–10988, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. V. Halliwell and P. R. Adams, “Voltage-clamp analysis of muscarinic excitation in hippocampal neurons,” Brain Research, vol. 250, no. 1, pp. 71–92, 1982. View at Publisher · View at Google Scholar · View at Scopus
  15. D. R. Stevens, R. Seifert, B. Bufe et al., “Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli,” Nature, vol. 413, no. 6856, pp. 631–635, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. W. El-Kholy, P. E. MacDonald, J. M. Fox et al., “Hyperpolarization-activated cyclic nucleotide-gated channels in pancreatic β-cell,” Molecular Endocrinology, vol. 21, no. 3, pp. 753–764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Endo, E. Tarusawa, T. Notomi et al., “Dendritic Ih ensures high-fidelity dendritic spike responses of motion-sensitive neurons in rat superior colliculus,” Journal of Neurophysiology, vol. 99, no. 5, pp. 2066–2076, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Notomi and R. Shigemoto, “Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain,” Journal of Comparative Neurology, vol. 471, no. 3, pp. 241–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Huang and L. O. Trussell, “KCNQ5 channels control resting properties and release probability of a synapse,” Nature Neuroscience, vol. 14, no. 7, pp. 840–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Boyes, J. P. Bolam, R. Shigemoto, and I. M. Stanford, “Functional presynaptic HCN channels in the rat globus pallidus,” European Journal of Neuroscience, vol. 25, no. 7, pp. 2081–2092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Y. Abbas, S. W. Ying, and P. A. Goldstein, “Compartmental distribution of hyperpolarization-activated cyclic-nucleotide-gated channel 2 and hyperpolarization-activated cyclic-nucleotide-gated channel 4 in thalamic reticular and thalamocortical relay neurons,” Neuroscience, vol. 141, no. 4, pp. 1811–1825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. E. Atkinson and S. R. Williams, “Postnatal development of dendritic synaptic integration in rat neocortical pyramidal neurons,” Journal of Neurophysiology, vol. 102, no. 2, pp. 735–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Jung, T. D. Jones, J. N. Lugo et al., “Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy,” The Journal of Neuroscience, vol. 27, no. 47, pp. 13012–13021, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. B. E. L. Adams, C. A. Reid, D. Myers et al., “Excitotoxic-mediated transcriptional decreases in HCN2 channel function increase network excitability in CA1,” Experimental Neurology, vol. 219, no. 1, pp. 249–257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Jung, J. B. Bullis, I. H. Lau, T. D. Jones, L. N. Warner, and N. P. Poolos, “Downregulation of dendritic HCN channel gating in epilepsy is mediated by altered phosphorylation signaling,” The Journal of Neuroscience, vol. 30, no. 19, pp. 6678–6688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Kase, T. Inoue, and K. Imoto, “Roles of the subthalamic nucleus and subthalamic HCN channels in absence seizures,” Journal of Neurophysiology, vol. 107, no. 1, pp. 393–406, 2012. View at Publisher · View at Google Scholar
  27. S. Jung, L. N. Warner, J. Pitsch, A. J. Becker, and N. P. Poolos, “Rapid loss of dendritic HCN channel expression in hippocampal pyramidal neurons following status epilepticus,” The Journal of Neuroscience, vol. 31, no. 40, pp. 14291–14295, 2011. View at Google Scholar
  28. J. D. Breton and G. J. Stuart, “Loss of sensory input increases the intrinsic excitability of layer 5 pyramidal neurons in rat barrel cortex,” Journal of Physiology, vol. 587, no. 21, pp. 5107–5119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Wang, B. P. Ramos, C. D. Paspalas et al., “α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex,” Cell, vol. 129, no. 2, pp. 397–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. L. Hines and N. T. Carnevale, The Neuron Book, Cambridge University Press, Cambridge, UK, 2006.
  31. J. F. Atherton, K. Kitano, J. Baufreton et al., “Selective participation of somatodendritic HCN channels in inhibitory but not excitatory synaptic integration in neurons of the subthalamic nucleus,” The Journal of Neuroscience, vol. 30, no. 47, pp. 16025–16040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. C. Magee, “Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons,” The Journal of Neuroscience, vol. 18, no. 19, pp. 7613–7624, 1998. View at Google Scholar · View at Scopus
  33. T. Berger, M. E. Larkum, and H. R. Lüscher, “High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs,” Journal of Neurophysiology, vol. 85, no. 2, pp. 855–868, 2001. View at Google Scholar · View at Scopus
  34. J. C. Magee, “Erratum: dendritic I(h) normalizes temporal summation in hippocampal CA1,” Nature Neuroscience, vol. 2, no. 9, p. 848, 1999. View at Google Scholar · View at Scopus
  35. S. R. Williams and G. J. Stuart, “Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons,” Journal of Neurophysiology, vol. 83, no. 5, pp. 3177–3182, 2000. View at Google Scholar · View at Scopus
  36. D. L. F. Garden, P. D. Dodson, C. O'Donnell, M. D. White, and M. F. Nolan, “Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields,” Neuron, vol. 60, no. 5, pp. 875–889, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Hutcheon and Y. Yarom, “Resonance, oscillation and the intrinsic frequency preferences of neurons,” Trends in Neurosciences, vol. 23, no. 5, pp. 216–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. F. G. Pike, R. S. Goddard, J. M. Suckling, P. Ganter, N. Kasthuri, and O. Paulsen, “Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents,” Journal of Physiology, vol. 529, no. 1, pp. 205–213, 2000. View at Google Scholar · View at Scopus
  39. J. Kwag and O. Paulsen, “Bidirectional control of spike timing by GABAA receptor-mediated inhibition during theta oscillation in CA1 pyramidal neurons,” NeuroReport, vol. 20, no. 13, pp. 1209–1213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D. McLelland and O. Paulsen, “Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information,” Journal of Physiology, vol. 587, no. 4, pp. 769–785, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Zemankovics, S. Káli, O. Paulsen, T. F. Freund, and N. Hájos, “Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics,” Journal of Physiology, vol. 588, no. 12, pp. 2109–2132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. W. N. Xue, Y. Wang, S. M. He, X. L. Wang, J. L. Zhu, and G. D. Gao, “SK- and h-current contribute to the generation of theta-like resonance of rat substantia nigra pars compacta dopaminergic neurons at hyperpolarized membrane potentials,” Brain Structure and Function, vol. 217, no. 2, pp. 379–394, 2012. View at Publisher · View at Google Scholar
  43. S. G. Meuth, T. Kanyshkova, P. Meuth et al., “Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels,” Journal of Neurophysiology, vol. 96, no. 3, pp. 1517–1529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. S. George, L. F. Abbott, and S. A. Siegelbaum, “HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels,” Nature Neuroscience, vol. 12, no. 5, pp. 577–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. A. Brown and G. M. Passmore, “Neural KCNQ (Kv7) channels,” British Journal of Pharmacology, vol. 156, no. 8, pp. 1185–1195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Huang, R. Lujan, I. Kadurin et al., “Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses,” Nature Neuroscience, vol. 14, no. 4, pp. 478–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. S. Lewis, C. M. Estep, and D. M. Chetkovich, “The fast and slow ups and downs of HCN channel regulation,” Channels, vol. 4, no. 3, pp. 215–231, 2010. View at Google Scholar · View at Scopus
  48. T. Tateno and H. P. Robinson, “The mechanism of ethanol action on midbrain dopaminergic neuron firing: a dynamic-clamp study of the role of Ih and GABAergic synaptic integration,” Journal of Neurophysiology, vol. 106, no. 4, pp. 1901–1922, 2011. View at Publisher · View at Google Scholar
  49. S. W. Ying, G. R. Tibbs, A. Picollo et al., “PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons,” The Journal of Neuroscience, vol. 31, no. 28, pp. 10412–10423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. C. S. Chan, K. E. Glajch, T. S. Gertler et al., “HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease,” Nature Neuroscience, vol. 14, no. 1, pp. 85–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. C. DiFrancesco, A. Barbuti, R. Milanesi et al., “Recessive loss-of-function mutation in the pacemaker HCN2 channel causing increased neuronal excitability in a patient with idiopathic generalized epilepsy,” The Journal of Neuroscience, vol. 31, no. 48, pp. 17327–17337, 2011. View at Publisher · View at Google Scholar
  52. C. A. Reid, A. M. Phillips, and S. Petrou, “HCN channelopathies: pathophysiology in genetic epilepsy and therapeutic implications,” British Journal of Pharmacology, vol. 165, no. 1, pp. 49–56, 2012. View at Publisher · View at Google Scholar
  53. A. Ludwig, T. Budde, J. Stieber et al., “Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2,” EMBO Journal, vol. 22, no. 2, pp. 216–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Rall and J. Rinzel, “Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model,” Biophysical Journal, vol. 13, no. 7, pp. 648–688, 1973. View at Google Scholar · View at Scopus
  55. P. Hemond, D. Epstein, A. Boley, M. Migliore, G. A. Ascoli, and D. B. Jaffe, “Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b,” Hippocampus, vol. 18, no. 4, pp. 411–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Gillies and D. Willshaw, “Models of the subthalamic nucleus: the importance of intranuclear connectivity,” Medical Engineering and Physics, vol. 26, no. 9, pp. 723–732, 2004. View at Publisher · View at Google Scholar · View at Scopus