Table of Contents
Journal of Signal Transduction
Volume 2012 (2012), Article ID 902854, 14 pages
http://dx.doi.org/10.1155/2012/902854
Review Article

The Role of Semaphorins and Their Receptors in Gliomas

Neurobiology/Ageing Programme, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, Singapore 117456

Received 22 February 2012; Accepted 6 August 2012

Academic Editor: Bertrand Jean-Claude

Copyright © 2012 Janice Wai Sze Law and Alan Yiu Wah Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Legler, L. A. Gloeckler Ries, M. A. Smith et al., “Brain and other central nervous system cancers: recent trends in incidence and mortality,” Journal of the National Cancer Institute, vol. 91, no. 16, pp. 1382–1390, 1999. View at Google Scholar · View at Scopus
  2. P. Kleihues and W. K. Cavenee, Pathology and Genetics of Tumors of the Nervous System, International Agency for Research on Cancer, Lyon, France, 2000.
  3. D. N. Louis, H. Ohgaki, O. D. Wiestler et al., “The 2007 WHO classification of tumours of the central nervous system,” Acta Neuropathologica, vol. 114, no. 2, pp. 97–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. A. Maher, F. B. Furnari, R. M. Bachoo et al., “Malignant glioma: Genetics and biology of a grave matter,” Genes and Development, vol. 15, no. 11, pp. 1311–1333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Ohgaki and P. Kleihues, “Epidemiology and etiology of gliomas,” Acta Neuropathologica, vol. 109, no. 1, pp. 93–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. C. Burger, B. W. Scheithauer, and W. Paulus, “Pilocytic astrocytoma,” in Pathology and Genetics of Tumours of the Nervous System, P. Kleihues and W. K. Cavenee, Eds., pp. 45–51, International Agency for Research on Cancer, Lyon, France, 2000. View at Google Scholar
  7. P. Kleihues and H. Ohgaki, “Primary and secondary glioblastomas: from concept to clinical diagnosis,” Neuro-Oncology, vol. 1, no. 1, pp. 44–51, 1999. View at Google Scholar · View at Scopus
  8. H. Ohgaki and P. Kleihues, “Genetic pathways to primary and secondary glioblastoma,” American Journal of Pathology, vol. 170, no. 5, pp. 1445–1453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Mizoguchi, R. A. Betensky, T. T. Batchelor, D. C. Bernay, D. N. Louis, and C. L. Nutt, “Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: Correlation with EGFR status, tumor grade, and survival,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 12, pp. 1181–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. Wong, S. H. Bigner, D. D. Bigner, K. W. Kinzler, S. R. Hamilton, and B. Vogelstein, “Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 19, pp. 6899–6903, 1987. View at Google Scholar · View at Scopus
  11. C. J. Wikstrand, R. E. McLendon, A. H. Friedman, and D. D. Bigner, “Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII,” Cancer Research, vol. 57, no. 18, pp. 4130–4140, 1997. View at Google Scholar · View at Scopus
  12. A. J. Ekstrand, N. Longo, M. L. Hamid et al., “Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification,” Oncogene, vol. 9, no. 8, pp. 2313–2320, 1994. View at Google Scholar · View at Scopus
  13. Y. Narita, M. Nagane, K. Mishima, H. J. Su Huang, F. B. Furnari, and W. K. Cavenee, “Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas,” Cancer Research, vol. 62, no. 22, pp. 6764–6769, 2002. View at Google Scholar · View at Scopus
  14. J. A. Diehl, M. Cheng, M. F. Roussel, and C. J. Sherr, “Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization,” Genes and Development, vol. 12, no. 22, pp. 3499–3511, 1998. View at Google Scholar · View at Scopus
  15. G. Lammering, K. Valerie, P. S. Lin, T. H. Hewit, and R. K. Schmidt-Ullrich, “Radiation-induced activation of a common variant of EGFR confers enhanced radioresistance,” Radiotherapy and Oncology, vol. 72, no. 3, pp. 267–273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. C. E. Welch, W. J. Coadwell, L. R. Stephens, and P. T. Hawkins, “Phosphoinositide 3-kinase-dependent activation of Rac,” FEBS Letters, vol. 546, no. 1, pp. 93–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Forsyth, H. Wong, T. D. Laing et al., “Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas,” British Journal of Cancer, vol. 79, no. 11-12, pp. 1828–1835, 1999. View at Google Scholar · View at Scopus
  18. A. Guha, M. M. Feldkamp, N. Lau, G. Boss, and A. Pawson, “Proliferation of human malignant astrocytomas is dependent on Ras activation,” Oncogene, vol. 15, no. 23, pp. 2755–2765, 1997. View at Google Scholar · View at Scopus
  19. G. S. Kapoor and D. M. O'Rourke, “Receptor tyrosine kinase signaling in gliomagenesis: pathobiology and therapeutic approaches,” Cancer Biology and Therapy, vol. 2, no. 4, pp. 330–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. M. Feldkamp, N. Lau, and A. Guha, “The farnesyltransferase inhibitor L-744,832 inhibits the growth of astrocytomas through a combination of antiproliferative, antiangiogenic, and proapoptotic activities,” Annals of the New York Academy of Sciences, vol. 886, pp. 257–260, 1999. View at Google Scholar · View at Scopus
  21. L. Goldberg and Y. Kloog, “A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration,” Cancer Research, vol. 66, no. 24, pp. 11709–11717, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Gupta, A. R. Ramjaun, P. Haiko et al., “Binding of ras to phosphoinositide 3-Kinase p110α is required for ras-driven tumorigenesis in mice,” Cell, vol. 129, no. 5, pp. 957–968, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Wennström and J. Downward, “Role of phosphoinositide 3-kinase in activation of Ras and mitogen-activated protein kinase by epidermal growth factor,” Molecular and Cellular Biology, vol. 19, no. 6, pp. 4279–4288, 1999. View at Google Scholar · View at Scopus
  24. P. A. Steck, M. A. Pershouse, S. A. Jasser et al., “Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers,” Nature Genetics, vol. 15, no. 4, pp. 356–362, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Li, C. Yen, D. Liaw et al., “PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer,” Science, vol. 275, no. 5308, pp. 1943–1947, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Maehama and J. E. Dixon, “The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate,” The Journal of Biological Chemistry, vol. 273, no. 22, pp. 13375–13378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Natarajan, T. P. Hecker, and C. L. Gladson, “FAK signaling in anaplastic astrocytoma and glioblastoma tumors,” Cancer Journal, vol. 9, no. 2, pp. 126–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Gu, M. Tamura, and K. M. Yamada, “Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways,” Journal of Cell Biology, vol. 143, no. 5, pp. 1375–1383, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Tamura, J. Gu, T. Takino, and K. M. Yamada, “Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: Differential involvement of focal adhesion kinase and p130Cas,” Cancer Research, vol. 59, no. 2, pp. 442–449, 1999. View at Google Scholar · View at Scopus
  30. J. Gu, M. Tamura, R. Pankov et al., “Shc and FAK differentially regulate cell motility and directionality modulated by PTEN,” Journal of Cell Biology, vol. 146, no. 2, pp. 389–403, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. F. B. Furnari, H. Lin, H. J. S. Huang, and W. K. Cavenee, “Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12479–12484, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Steck, M. A. Pershouse, S. A. Jasser et al., “Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers,” Nature Genetics, vol. 15, no. 4, pp. 356–362, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Haas-Kogan, N. Shalev, M. Wong, G. Mills, G. Yount, and D. Stokoe, “Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC,” Current Biology, vol. 8, no. 21, pp. 1195–1198, 1998. View at Google Scholar · View at Scopus
  34. Q. Shi, A. B. Hjelmeland, S. T. Keir et al., “A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth,” Molecular Carcinogenesis, vol. 46, no. 6, pp. 488–496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Zagzag, M. Nomura, D. R. Friedlander et al., “Geldanamycin inhibits migration of glioma cells in vitro: A potential role for hypoxia-inducible factor (HIF-1α) in glioma cell invasion,” Journal of Cellular Physiology, vol. 196, no. 2, pp. 394–402, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Zagzag, D. R. Friedlander, B. Margolis et al., “Molecular events implicated in brain tumor angiogenesis and invasion,” Pediatric Neurosurgery, vol. 33, no. 1, pp. 49–55, 2000. View at Google Scholar · View at Scopus
  37. M. Nakada, J. A. Niska, N. L. Tran, W. S. McDonough, and M. E. Berens, “EphB2/R-ras signaling regulates glioma cell adhesion, growth, and invasion,” American Journal of Pathology, vol. 167, no. 2, pp. 565–576, 2005. View at Google Scholar · View at Scopus
  38. H. L. Bouterfa, V. Sattelmeyer, S. Czub, D. Vordermark, K. Roosen, and J. C. Tonn, “Inhibition of Ras farnesylation by lovastatin leads to downregulation of proliferation and migration in primary cultured human glioblastoma cells,” Anticancer Research, vol. 20, no. 4, pp. 2761–2771, 2000. View at Google Scholar · View at Scopus
  39. N. Dyson, “The regulation of E2F by pRB-family proteins,” Genes and Development, vol. 12, no. 15, pp. 2245–2262, 1998. View at Google Scholar · View at Scopus
  40. K. Ueki, Y. Ono, J. W. Henson, J. T. Efird, A. Von Deimling, and D. N. Louis, “CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated,” Cancer Research, vol. 56, no. 1, pp. 150–153, 1996. View at Google Scholar · View at Scopus
  41. K. L. Burns, K. Ueki, S. L. Jhung, J. Koh, and D. N. Louis, “Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 2, pp. 122–130, 1998. View at Google Scholar · View at Scopus
  42. A. C. Bellail, S. B. Hunter, D. J. Brat, C. Tan, and E. G. Van Meir, “Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 6, pp. 1046–1069, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. A. A. Jarjour, M. Durko, T. L. Luk et al., “Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation,” PLoS ONE, vol. 6, no. 9, Article ID e25408, 2011. View at Google Scholar
  44. S. Mertsch, N. Schmitz, A. Jeibmann, J. G. Geng, W. Paulus, and V. Senner, “Slit2 involvement in glioma cell migration is mediated by Robo1 receptor,” Journal of Neuro-Oncology, vol. 87, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Neufeld, N. Shraga-Heled, T. Lange, N. Guttmann-Raviv, Y. Herzog, and O. Kessler, “Semaphorins in cancer,” Frontiers in Bioscience, vol. 10, pp. 751–760, 2005. View at Google Scholar · View at Scopus
  46. M. Reyes-Mugica, K. Rieger-Christ, H. Ohgaki et al., “Loss of DCC expression and glioma progression,” Cancer Research, vol. 57, no. 3, pp. 382–386, 1997. View at Google Scholar · View at Scopus
  47. J. J. Yiin, B. Hu, M. J. Jarzynka et al., “Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity,” Neuro-Oncology, vol. 11, no. 6, pp. 779–789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Dallol, D. Krex, L. Hesson, C. Eng, E. R. Maher, and F. Latif, “Frequent epigenetic inactivation of the SLIT2 gene in gliomas,” Oncogene, vol. 22, no. 29, pp. 4611–4616, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. R. G. Correa, R. M. Sasahara, M. H. Bengtson et al., “Human semaphorin 6B [(HSA)SEMA6B], a novel human class 6 semaphorin gene: Alternative splicing and all-trans-retinoic acid-dependent downregulation in glioblastoma cell lines,” Genomics, vol. 73, no. 3, pp. 343–348, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. J. N. Rich, C. Hans, B. Jones et al., “Gene expression profiling and genetic markers in glioblastoma survival,” Cancer Research, vol. 65, no. 10, pp. 4051–4058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Li and A. Y. W. Lee, “Semaphorin 5A and plexin-B3 inhibit human glioma cell motility through RhoGDIα-mediated inactivation of Rac1 GTPase,” The Journal of Biological Chemistry, vol. 285, no. 42, pp. 32436–32445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. X. Li, J. W. S. Law, and A. Y. W. Lee, “Semaphorin 5A and plexin-B3 regulate human glioma cell motility and morphology through Rac1 and the actin cytoskeleton,” Oncogene, vol. 31, no. 5, pp. 595–610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Tamagnone, S. Artigiani, H. Chen et al., “Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates,” Cell, vol. 99, no. 1, pp. 71–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. J. C. Adams and J. Lawler, “The thrombospondins,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 10, Article ID a009712, 2011. View at Google Scholar
  55. V. Castellani, A. Chédotal, M. Schachner, C. Faivre-Sarrailh, and G. Rougon, “Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance,” Neuron, vol. 27, no. 2, pp. 237–249, 2000. View at Google Scholar · View at Scopus
  56. T. Toyofuku, H. Zhang, A. Kumanogoh et al., “Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2,” Genes and Development, vol. 18, no. 4, pp. 435–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. J. M. Swiercz, R. Kuner, and S. Offermanns, “Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2,” Journal of Cell Biology, vol. 165, no. 6, pp. 869–880, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Kumanogoh, C. Watanabe, I. Lee et al., “Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling,” Immunity, vol. 13, no. 5, pp. 621–631, 2000. View at Google Scholar · View at Scopus
  59. A. Kumanogoh, S. Marukawa, K. Suzuki et al., “Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2,” Nature, vol. 419, no. 6907, pp. 629–633, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. R. H. Xiang, C. H. Hensel, D. K. Garcia et al., “Isolation of the human semaphorin III/F Gene (SEM A3F) at chromosome 3p21, a region deleted in lung cancer,” Genomics, vol. 32, no. 1, pp. 39–48, 1996. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Sekido, S. Bader, F. Latif et al., “Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 9, pp. 4120–4125, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Roche, F. Boldog, M. Robinson et al., “Distinct 3p21.3 deletions in lung cancer and identification of a new human semaphorin,” Oncogene, vol. 12, no. 6, pp. 1289–1297, 1996. View at Google Scholar · View at Scopus
  63. Y. Tomizawa, Y. Sekido, M. Kondo et al., “Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13954–13959, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Castro-Rivera, S. Ran, P. Thorpe, and J. D. Minna, “Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 31, pp. 11432–11437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. I. Chabbert-De Ponnat, V. Buffard, K. Leroy et al., “Antiproliferative effect of semaphorin 3F on human melanoma cell lines,” Journal of Investigative Dermatology, vol. 126, no. 10, pp. 2343–2345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Wu, Q. Zhou, J. Yang et al., “Endogenous axon guiding chemorepulsant semaphorin-3F inhibits the growth and metastasis of colorectal carcinoma,” Clinical Cancer Research, vol. 17, no. 9, pp. 2702–2711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. D. R. Bielenberg, Y. Hida, A. Shimizu et al., “Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype,” Journal of Clinical Investigation, vol. 114, no. 9, pp. 1260–1271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. R. E. Bachelder, E. A. Lipscomb, X. Lin et al., “Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells,” Cancer Research, vol. 63, no. 17, pp. 5230–5233, 2003. View at Google Scholar · View at Scopus
  69. J. G. Herman and G. G. Meadows, “Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells,” International Journal of Oncology, vol. 30, no. 5, pp. 1231–1238, 2007. View at Google Scholar · View at Scopus
  70. M. Martin-Satue and J. Blanco, “Identification of semaphorin E gene expression in metastatic human lung adenocarcinoma cells by mRNA differential display,” Journal of Surgical Oncology, vol. 72, no. 1, pp. 18–23, 1999. View at Google Scholar
  71. C. Christensen, N. Ambartsumian, G. Gilestro et al., “Proteolytic processing converts the repelling signal Sema3E into an inducer of invasive growth and lung metastasis,” Cancer Research, vol. 65, no. 14, pp. 6167–6177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. J. R. Basile, R. M. Castilho, V. P. Williams, and J. S. Gutkind, “Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9017–9022, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Kato, K. Kubota, T. Shimamura et al., “Semaphorin 4D, a lymphocyte semaphorin, enhances tumor cell motility through binding its receptor, plexinB1, in pancreatic cancer,” Cancer Science, vol. 102, no. 11, pp. 2029–2037, 2011. View at Google Scholar
  74. O. G. W. Wong, T. Nitkunan, I. Oinuma et al., “Plexin-B1 mutations in prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 48, pp. 19040–19045, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Rody, T. Karn, E. Ruckhäberle et al., “Loss of plexin B1 is highly prognostic in low proliferating ER positive breast cancers—results of a large scale microarray analysis,” European Journal of Cancer, vol. 45, no. 3, pp. 405–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. J. J. Gómez Román, G. O. Garay, P. Saenz et al., “Plexin B1 is downregulated in renal cell carcinomas and modulates cell growth,” Translational Research, vol. 151, no. 3, pp. 134–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. G. M. Argast, C. H. Croy, K. L. Couts et al., “Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells,” Oncogene, vol. 28, no. 30, pp. 2697–2709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Dhanabal, F. Wu, E. Alvarez et al., “Recombinant Semaphorin 6A-1 ectodomain inhibits in vivo growth factor and tumor cell line-induced angiogenesis,” Cancer Biology and Therapy, vol. 4, no. 6, pp. 659–668, 2005. View at Google Scholar · View at Scopus
  79. X. Y. Zhao, L. Chen, Q. Xu, and Y. H. Li, “Expression of semaphorin 6D in gastric carcinoma and its significance,” World Journal of Gastroenterology, vol. 12, no. 45, pp. 7388–7390, 2006. View at Google Scholar · View at Scopus
  80. G. A. Scott, L. A. McClelland, A. F. Fricke, and A. Fender, “Plexin C1, a receptor for semaphorin 7a, inactivates cofilin and is a potential tumor suppressor for melanoma progression,” Journal of Investigative Dermatology, vol. 129, no. 4, pp. 954–963, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. D. D. Roberts, “Regulation of tumor growth and metastasis by thrombospondin-1,” FASEB Journal, vol. 10, no. 10, pp. 1183–1191, 1996. View at Google Scholar · View at Scopus
  82. A. Sadanandam, M. L. Varney, S. Singh et al., “High gene expression of semaphorin 5A in pancreatic cancer is associated with tumor growth, invasion and metastasis,” International Journal of Cancer, vol. 127, no. 6, pp. 1373–1383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Sadanandam, E. G. Rosenbaugh, S. Singh, M. Varney, and R. K. Singh, “Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis,” Microvascular Research, vol. 79, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Q. Pan, H. Z. Ren, S. F. Zhang, X. M. Wang, and J. F. Wen, “Expression of semaphorin 5A and its receptor plexin B3 contributes to invasion and metastasis of gastric carcinoma,” World Journal of Gastroenterology, vol. 15, no. 22, pp. 2800–2804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Pan, H. Lv, H. Ren et al., “Elevated expression of semaphorin 5A in human gastric cancer and its implication in carcinogenesis,” Life Sciences, vol. 86, no. 3-4, pp. 139–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. T. P. Lu, M. H. Tsai, J. M. Lee et al., “Identification of a novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 10, pp. 2590–2597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Balakrishnan, J. Y. Penachioni, S. Lamba et al., “Molecular profiling of the "plexinome" in melanoma and pancreatic cancer,” Human Mutation, vol. 30, no. 8, pp. 1167–1174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Rieger, W. Wick, and M. Weller, “Human malignant glioma cells express semaphorins and their receptors, neuropilins and plexins,” GLIA, vol. 42, no. 4, pp. 379–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Karayan-Tapon, M. Wager, J. Guilhot et al., “Semaphorin, neuropilin and VEGF expression in glial tumours: SEMA3G, a prognostic marker?” British Journal of Cancer, vol. 99, no. 7, pp. 1153–1160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Bagci, J. K. Wu, R. Pfannl, L. L. Ilag, and D. G. Jay, “Autocrine semaphorin 3A signaling promotes glioblastoma dispersal,” Oncogene, vol. 28, no. 40, pp. 3537–3550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. V. Barresi, E. Vitarelli, and S. Cerasoli, “Semaphorin3A immunohistochemical expression in human meningiomas: correlation with the microvessel density,” Virchows Archiv, vol. 454, no. 5, pp. 563–571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Shimizu, A. Mammoto, J. E. Italiano et al., “ABL2/ARG tyrosine kinase mediates SEMA3F-induced RhoA inactivation and cytoskeleton collapse in human glioma cells,” The Journal of Biological Chemistry, vol. 283, no. 40, pp. 27230–27238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Coma, D. N. Amin, A. Shimizu, A. Lasorella, A. Iavarone, and M. Klagsbrun, “Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3F,” Cancer Research, vol. 70, no. 9, pp. 3823–3832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. X. Zhou, L. Ma, J. Li et al., “Effects of SEMA3G on migration and invasion of glioma cells,” Oncology Reports, vol. 28, no. 1, pp. 269–275, 2012. View at Google Scholar
  95. B. Hu, P. Guo, I. Bar-Joseph et al., “Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway,” Oncogene, vol. 26, no. 38, pp. 5577–5586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Sasaki, C. Cheng, Y. Uchida et al., “Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex,” Neuron, vol. 35, no. 5, pp. 907–920, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Y. Ahn, Y. Hu, T. G. Kroll, P. Allard, and K. Ye, “PIKE-A is amplified in human cancers and prevents apoptosis by up-regulating Akt,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 18, pp. 6993–6998, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Liu, B. Tian, M. Gearing, S. Hunter, K. Ye, and Z. Mao, “Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 21, pp. 7570–7575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. K. V. Lu, S. Zhu, A. Cvrljevic et al., “Fyn and Src are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients,” Cancer Research, vol. 69, no. 17, pp. 6889–6898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. H. G. Vikis, W. Li, Z. He, and K. L. Guan, “The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 23, pp. 12457–12462, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. J. M. Swiercz, R. Kuner, J. Behrens, and S. Offermanns, “Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology,” Neuron, vol. 35, no. 1, pp. 51–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. V. Perrot, J. Vázquez-Prado, and J. Silvio Gutkind, “Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF,” The Journal of Biological Chemistry, vol. 277, no. 45, pp. 43115–43120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Aurandt, H. G. Vikis, J. S. Gutkind, N. Ahn, and K. L. Guan, “The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12085–12090, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. M. H. E. Driessens, C. Olivo, K. I. Nagata, M. Inagaki, and J. G. Collard, “B plexins activate Rho through PDZ-RhoGEF,” FEBS Letters, vol. 529, no. 2-3, pp. 168–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Hirotani, Y. Ohoka, T. Yamamoto et al., “Interaction of plexin-B1 with PDZ domain-containing Rho guanine nucleotide exchange factors,” Biochemical and Biophysical Research Communications, vol. 297, no. 1, pp. 32–37, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Aurandt, W. Li, and K. L. Guan, “Semaphorin 4D activates the MAPK pathway downstream of plexin-B1,” Biochemical Journal, vol. 394, no. 2, pp. 459–464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. W. Li, H. Chong, and K. L. Guan, “Function of the rho family GTPases in Ras-stimulated Raf activation,” The Journal of Biological Chemistry, vol. 276, no. 37, pp. 34728–34737, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Barberis, A. Casazza, R. Sordella et al., “p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling,” Journal of Cell Science, vol. 118, no. 20, pp. 4689–4700, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Wennerberg, M. A. Forget, S. M. Ellerbroek et al., “Rnd proteins function as RhoA antagonists by activating p190 RhoGAP,” Current Biology, vol. 13, no. 13, pp. 1106–1115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. I. Oinuma, H. Katoh, A. Harada, and M. Negishi, “Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells,” The Journal of Biological Chemistry, vol. 278, no. 28, pp. 25671–25677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. I. Oinuma, Y. Ishikawa, H. Katoh, and M. Negishi, “The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras,” Science, vol. 305, no. 5685, pp. 862–865, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. I. Oinuma, H. Katoh, and M. Negishi, “Molecular dissection of the semaphorin 4D receptor Plexin-B1-stimulated R-Ras GTPase-activating protein activity and neurite remodeling in hippocampal neurons,” Journal of Neuroscience, vol. 24, no. 50, pp. 11473–11480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Toyofuku, J. Yoshida, T. Sugimoto et al., “FARP2 triggers signals for Sema3A-mediated axonal repulsion,” Nature Neuroscience, vol. 8, no. 12, pp. 1712–1719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. B. M. Marte, P. Rodriguez-Viciana, S. Wennström, P. H. Warne, and J. Downward, “R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways,” Current Biology, vol. 7, no. 1, pp. 63–70, 1997. View at Google Scholar · View at Scopus
  115. M. Osada, T. Tolkacheva, W. Li et al., “Differential roles of Akt, Rac, and Ral in R-Ras-mediated cellular transformation, adhesion, and survival,” Molecular and Cellular Biology, vol. 19, no. 9, pp. 6333–6344, 1999. View at Google Scholar · View at Scopus
  116. P. J. Keely, E. V. Rusyn, A. D. Cox, and L. V. Parise, “R-Ras signals through specific integrin α cytoplasmic domains to promote migration and invasion of breast epithelial cells,” Journal of Cell Biology, vol. 145, no. 5, pp. 1077–1088, 1999. View at Publisher · View at Google Scholar · View at Scopus
  117. I. Oinuma, H. Katoh, and M. Negishi, “Semaphorin 4D/Plexin-B1-mediated R-Ras GAP activity inhibits cell migration by regulating β1 integrin activity,” Journal of Cell Biology, vol. 173, no. 4, pp. 601–613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. I. Oinuma, Y. Ito, H. Katoh, and M. Negishi, “Semaphorin 4D/Plexin-B1 stimulates PTEN activity through R-Ras GTPase-activating protein activity, inducing growth cone collapse in hippocampal neurons,” The Journal of Biological Chemistry, vol. 285, no. 36, pp. 28200–28209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Saito, I. Oinuma, S. Fujimoto, and M. Negishi, “Plexin-B1 is a GTPase activating protein for M-Ras, remodelling dendrite morphology,” EMBO Reports, vol. 10, no. 6, pp. 614–621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. N. Lau, E. J. Uhlmann, F. C. Von Lintig et al., “Rap1 activity is elevated in malignant astrocytomas independent of tuberous sclerosis complex-2 gene expression,” International journal of oncology, vol. 22, no. 1, pp. 195–200, 2003. View at Google Scholar · View at Scopus
  121. J. Laterra, E. Rosen, M. Nam, S. Ranganathan, K. Fielding, and P. Johnston, “Scatter factor/hepatocyte growth factor expression enhances human glioblastoma tumorigenicity and growth,” Biochemical and Biophysical Research Communications, vol. 235, no. 3, pp. 743–747, 1997. View at Publisher · View at Google Scholar · View at Scopus
  122. R. Abounader, S. Ranganathan, B. Lal et al., “Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression,” Journal of the National Cancer Institute, vol. 91, no. 18, pp. 1548–1556, 1999. View at Google Scholar · View at Scopus
  123. R. Abounader, B. Lal, C. Luddy et al., “In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis,” The FASEB Journal, vol. 16, no. 1, pp. 108–110, 2002. View at Google Scholar · View at Scopus
  124. S. Giordano, S. Corso, P. Conrotto et al., “The semaphorin 4D receptor controls invasive growth by coupling with Met,” Nature Cell Biology, vol. 4, no. 9, pp. 720–724, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. P. Conrotto, S. Corso, S. Gamberini, P. M. Comoglio, and S. Giordano, “Interplay between scatter factor receptors and B plexins controls invasive growth,” Oncogene, vol. 23, no. 30, pp. 5131–5137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Stevens, L. McClelland, A. Fricke, M. Williamson, I. Kuo, and G. Scott, “Plexin B1 suppresses c-met in melanoma: a role for plexin B1 as a tumor-suppressor protein through regulation of c-met,” Journal of Investigative Dermatology, vol. 130, no. 6, pp. 1636–1645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. J. M. Swiercz, T. Worzfeld, and S. Offermanns, “ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1,” The Journal of Biological Chemistry, vol. 283, no. 4, pp. 1893–1901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Schlegel, G. Stumm, K. Brandle et al., “Amplification and differential expression of members of the erbB-gene family in human glioblastoma,” Journal of Neuro-Oncology, vol. 22, no. 3, pp. 201–207, 1994. View at Publisher · View at Google Scholar · View at Scopus
  129. K. Ochi, T. Mori, Y. Toyama, Y. Nakamura, and H. Arakawa, “Identification of Semaphorin3B as a direct target of p53,” Neoplasia, vol. 4, no. 1, pp. 82–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. D. Basto, V. Trovisco, J. M. Lopes et al., “Mutation analysis of B-RAF gene in human gliomas,” Acta Neuropathologica, vol. 109, no. 2, pp. 207–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. J. Jeuken, C. van de Broecke, S. Gijsen, S. Boots-Sprenger, and P. Wesseling, “RAS/RAF pathway activation in gliomas: the result of copy number gains rather than activating mutations,” Acta Neuropathologica, vol. 114, no. 2, pp. 121–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. Lyustikman, H. Momota, W. Pao, and E. C. Holland, “Constitutive activation of raf-1 induces glioma formation in mice,” Neoplasia, vol. 10, no. 5, pp. 501–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. H. Davies, G. R. Bignell, C. Cox et al., “Mutations of the BRAF gene in human cancer,” Nature, vol. 417, no. 6892, pp. 949–954, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. C. Walker, D. G. Du Plessis, K. A. Joyce et al., “Phenotype versus genotype in gliomas displaying inter- or intratumoral histological heterogeneity,” Clinical Cancer Research, vol. 9, no. 13, pp. 4841–4851, 2003. View at Google Scholar · View at Scopus