Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 956958, 8 pages
http://dx.doi.org/10.1155/2012/956958
Review Article

DNA Methylation, Histone Modifications, and Signal Transduction Pathways: A Close Relationship in Malignant Gliomas Pathophysiology

Department of Biochemistry and Molecular Biology, School of Medicine, University of Alcalá, Carretera Madrid-Barcelona Km. 33.6, 28871 Madrid, Spain

Received 13 February 2012; Accepted 19 June 2012

Academic Editor: Laura Cerchia

Copyright © 2012 Raúl Alelú-Paz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Portela and M. Esteller, “Epigenetic modifications and human disease,” Nature Biotechnology, vol. 28, no. 10, pp. 1057–1068, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. P. W. Laird, “Principles and challenges of genome-wide DNA methylation analysis,” Nature Reviews Genetics, vol. 11, no. 3, pp. 191–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. X. Chen, J. R. Mann, C. L. Hsieh, A. D. Riggs, and F. Chédin, “Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family,” Journal of Cellular Biochemistry, vol. 95, no. 5, pp. 902–917, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Reik, W. Dean, and J. Walter, “Epigenetic reprogramming in mammalian development,” Science, vol. 293, no. 5532, pp. 1089–1093, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Esteller, “The necessity of a human epigenome project,” Carcinogenesis, vol. 27, no. 6, pp. 1121–1125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Straub and P. B. Becker, “Dosage compensation: the beginning and end of generalization,” Nature Reviews Genetics, vol. 8, no. 1, pp. 47–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. G. Urdinguio, J. V. Sanchez-Mut, and M. Esteller, “Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies,” The Lancet Neurology, vol. 8, no. 11, pp. 1056–1072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. Grant, “A tale of histone modifications,” Genome Biology, vol. 2, no. 4, article 3, 2001. View at Google Scholar · View at Scopus
  9. R. Burgess, R. Jenkins, and Z. Zhang, “Epigenetic changes in gliomas,” Cancer Biology and Therapy, vol. 7, no. 9, pp. 1326–1334, 2008. View at Google Scholar · View at Scopus
  10. X. Qian, Q. Shen, S. K. Goderie et al., “Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells,” Neuron, vol. 28, no. 1, pp. 69–80, 2000. View at Google Scholar · View at Scopus
  11. C. Ladd-Acosta, J. Pevsner, S. Sabunciyan et al., “DNA methylation signatures within the human brain,” American Journal of Human Genetics, vol. 81, no. 6, pp. 1304–1315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. K. Maunakea, R. P. Nagarajan, M. Bilenky et al., “Conserved role of intragenic DNA methylation in regulating alternative promoters,” Nature, vol. 466, no. 7303, pp. 253–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Szulwach, X. Li, Y. Li et al., “5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging,” Nature Neuroscience, vol. 14, no. 12, pp. 1607–1616, 2011. View at Google Scholar
  14. D. Globisch, M. Münzel, M. Müller et al., “Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates,” PLoS ONE, vol. 5, no. 12, Article ID e15367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. M. Lino and A. Merlo, “PI3Kinase signaling in glioblastoma,” Journal of Neuro-Oncology, vol. 103, no. 3, pp. 417–427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. F. Fraga, M. Herranz, J. Espada et al., “A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors,” Cancer Research, vol. 64, no. 16, pp. 5527–5534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Soroceanu, S. Kharbanda, R. Chen et al., “Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3466–3471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Esteller, “Epigenetic gene silencing in cancer: the DNA hypermethylome,” Human Molecular Genetics, vol. 16, no. 1, pp. R50–R59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Kim, W. Huang, X. Jiang, B. Pennicooke, P. J. Park, and M. D. Johnson, “Integrative genome analysis reveals an oncomir/ oncogene cluster regulating glioblastoma survivorship,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 2183–2188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Nakamura, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “Promoter hypermethylation of the RB1 gene in glioblastomas,” Laboratory Investigation, vol. 81, no. 1, pp. 77–82, 2001. View at Google Scholar · View at Scopus
  21. J. F. Costello, M. S. Berger, H. J. S. Huang, and W. K. Cavenee, “Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation,” Cancer Research, vol. 56, no. 10, pp. 2405–2410, 1996. View at Google Scholar · View at Scopus
  22. M. J. Bello and J. A. Rey, “The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas,” Cancer Genetics and Cytogenetics, vol. 164, no. 2, pp. 172–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Baeza, M. Weller, Y. Yonekawa, P. Kleihues, and H. Ohgaki, “PTEN methylation and expression in glioblastomas,” Acta Neuropathologica, vol. 106, no. 5, pp. 479–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Cecener, B. Tunca, U. Egeli et al., “The promoter hypermethylation status of GATA6, MGMT, and FHIT in glioblastoma,” Cellular and Molecular Neurobiology, vol. 32, no. 2, pp. 237–244, 2011. View at Google Scholar
  25. R. Martinez, J. I. Martin-Subero, V. Rohde et al., “A microarray-based DNA methylation study of glioblastoma multiforme,” Epigenetics, vol. 4, no. 4, pp. 255–264, 2009. View at Google Scholar · View at Scopus
  26. M. Alaminos, V. Dávalos, S. Ropero et al., “EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma,” Cancer Research, vol. 65, no. 7, pp. 2565–2571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. A. Scrideli, C. G. Carlotti, O. K. Okamoto et al., “Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR,” Journal of Neuro-Oncology, vol. 88, no. 3, pp. 281–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. P. Nagarajan and J. F. Costello, “Epigenetic mechanisms in glioblastoma multiforme,” Seminars in Cancer Biology, vol. 19, no. 3, pp. 188–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Zheng, E. A. Houseman, Z. Morrison et al., “DNA hypermethylation profiles associated with glioma subtypes and EZH2 and IGFBP2 mRNA expression,” Neuro-Oncology, vol. 13, no. 3, pp. 280–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Mueller, C. L. Nutt, M. Ehrich et al., “Downregulation of RUNX3 and TES by hypermethylation in glioblastoma,” Oncogene, vol. 26, no. 4, pp. 583–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Sadikovic, M. Yoshimoto, S. Chilton-MacNeill, P. Thorner, J. A. Squire, and M. Zielenska, “Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling,” Human Molecular Genetics, vol. 18, no. 11, pp. 1962–1975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. K. H. Lee, S. W. Lim, H. G. Kim et al., “Lack of death receptor 4 (DR4) expression through gene promoter methylation in gastric carcinoma,” Langenbeck's Archives of Surgery, vol. 394, no. 4, pp. 661–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Martinez, G. Schackert, and M. Esteller, “Hypermethylation of the proapoptotic gene TMS1/ASC: prognostic importance in glioblastoma multiforme,” Journal of Neuro-Oncology, vol. 82, no. 2, pp. 133–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Cillo, M. Cantile, A. Faiella, and E. Boncinelli, “Homeobox genes in normal and malignant cells,” Journal of Cellular Physiology, vol. 188, no. 2, pp. 161–169, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. W. J. Gehring and Y. Hiromi, “Homeotic genes and the homeobox,” Annual Review of Genetics, vol. 20, pp. 147–173, 1986. View at Google Scholar · View at Scopus
  36. H. Fiegl, G. Windbichler, E. Mueller-Holzner et al., “HOXA11 DNA methylation—a novel prognostic biomarker in ovarian cancer,” International Journal of Cancer, vol. 123, no. 3, pp. 725–729, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Di Vinci, I. Casciano, E. Marasco et al., “Quantitative methylation analysis of HOXA3, 7, 9, and 10 genes in glioma: association with tumor WHO grade and clinical outcome,” Journal of Cancer Research and Clinical Oncology, vol. 138, no. 1, pp. 35–47, 2011. View at Google Scholar
  38. H. Donninger, M. D. Vos, and G. J. Clark, “The RASSF1A tumor suppressor,” Journal of Cell Science, vol. 120, no. 18, pp. 3163–3172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Avruch, R. Xavier, N. Bardeesy et al., “Rassf family of tumor suppressor polypeptides,” Journal of Biological Chemistry, vol. 284, no. 17, pp. 11001–11005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Lorente, W. Mueller, E. Urdangarín et al., “RASSF1A, BLU, NORE1A, PTEN and MGMT expression and promoter methylation in gliomas and glioma cell lines and evidence of deregulated expression of de novo DNMTs,” Brain Pathology, vol. 19, no. 2, pp. 279–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Schmidt, S. Windmann, G. Reifenberger, and M. J. Riemenschneider, “DNA hypermethylation and histone modifications downregulate the candidate tumor suppressor gene RRP22 on 22q12 in human gliomas,” Brain Pathology, vol. 22, no. 1, pp. 17–25, 2011. View at Publisher · View at Google Scholar
  42. J. Zucman-Rossi, P. Legoix, and G. Thomas, “Identification of new members of the Gas2 and Ras families in the 22q12 chromosome region,” Genomics, vol. 38, no. 3, pp. 247–254, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Foltz, G. Y. Ryu, J. G. Yoon et al., “Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma,” Cancer Research, vol. 66, no. 13, pp. 6665–6674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Hesson, I. Bièche, D. Krex et al., “Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas,” Oncogene, vol. 23, no. 13, pp. 2408–2419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Martinez, F. Setien, C. Voelter et al., “CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme,” Carcinogenesis, vol. 28, no. 6, pp. 1264–1268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Zhou, R. Miki, M. Eeva et al., “Reciprocal regulation of SOCS1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme,” Clinical Cancer Research, vol. 13, no. 8, pp. 2344–2353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. W. J. Bodell, T. Aida, M. S. Berger, and M. L. Rosenblum, “Increased repair of O6-alkylguanine DNA adducts in glioma-derived human cells resistant to the cytotoxic and cytogenetic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea,” Carcinogenesis, vol. 7, no. 6, pp. 879–883, 1986. View at Google Scholar · View at Scopus
  48. M. Colvin and J. Hilton, “Pharmacology of cyclophosphamide and metabolites,” Cancer Treatment Reports, vol. 65, no. 3, pp. 89–95, 1981. View at Google Scholar · View at Scopus
  49. C. Balana, C. Carrato, J. L. Ramirez et al., “Tumour and serum MGMT promoter methylation and protein expression in glioblastoma patients,” Clinical and Translational Oncology, vol. 13, no. 9, pp. 677–685, 2011. View at Google Scholar
  50. M. Esteller, J. Garcia-Foncillas, E. Andion et al., “Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents,” The New England Journal of Medicine, vol. 343, no. 19, pp. 1350–1354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Martinez, G. Schackert, R. Yaya-Tur, I. Rojas-Marcos, J. G. Herman, and M. Esteller, “Frequent hypermethylation of the DNA repair gene MGMT in long-term survivors of glioblastoma multiforme,” Journal of Neuro-Oncology, vol. 83, no. 1, pp. 91–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Uno, S. M. Oba-Shinjo, A. A. Camargo et al., “Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma,” Clinics, vol. 66, no. 10, pp. 1747–1755, 2011. View at Google Scholar
  53. J. Y. Lee, C. K. Park, S. H. Park, K. C. Wang, B. K. Cho, and S. K. Kim, “MGMT promoter gene methylation in pediatric glioblastoma: analysis using MS-MLPA,” Child's Nervous System, vol. 27, no. 11, pp. 1877–1883, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. M. F. Fraga, E. Ballestar, A. Villar-Garea et al., “Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer,” Nature Genetics, vol. 37, no. 4, pp. 391–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Ropero, M. F. Fraga, E. Ballestar et al., “A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition,” Nature Genetics, vol. 38, no. 5, pp. 566–569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Ropero, E. Ballestar, M. Alaminos, D. Arango, S. Schwartz, and M. Esteller, “Transforming pathways unleashed by a HDAC2 mutation in human cancer,” Oncogene, vol. 27, no. 28, pp. 4008–4012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Häyry, M. Tanner, T. Blom et al., “Copy number alterations of the polycomb gene BMI1 in gliomas,” Acta Neuropathologica, vol. 116, no. 1, pp. 97–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. D. W. Parsons, S. Jones, X. Zhang et al., “An integrated genomic analysis of human glioblastoma multiforme,” Science, vol. 321, no. 5897, pp. 1807–1812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. P. B. Gupta, C. L. Chaffer, and R. A. Weinberg, “Cancer stem cells: mirage or reality?” Nature Medicine, vol. 15, no. 9, pp. 1010–1012, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. F. Clarke, J. E. Dick, P. B. Dirks et al., “Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells,” Cancer Research, vol. 66, no. 19, pp. 9339–9344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. P. Feinberg, R. Ohlsson, and S. Henikoff, “The epigenetic progenitor origin of human cancer,” Nature Reviews Genetics, vol. 7, no. 1, pp. 21–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Spivakov and A. G. Fisher, “Epigenetic signatures of stem-cell identity,” Nature Reviews Genetics, vol. 8, no. 4, pp. 263–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. A. A. Mills, “Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins,” Nature Reviews Cancer, vol. 10, no. 10, pp. 669–682, 2010. View at Publisher · View at Google Scholar · View at Scopus