Table of Contents
Journal of Structures
Volume 2013 (2013), Article ID 492839, 6 pages
http://dx.doi.org/10.1155/2013/492839
Research Article

Parametric Instability of Square Laminated Plates in Hygrothermal Environment

Department of Civil Engineering, National Institute of Technology, Rourkela, Orissa 769008, India

Received 29 April 2013; Accepted 8 July 2013

Academic Editor: Mustafa Kemal Apalak

Copyright © 2013 Manoj Kumar Rath and Shishir Kumar Sahu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. W. Chen and Y. M. Chen, “Vibrations of hygrothermal elastic composite plates,” Engineering Fracture Mechanics, vol. 31, no. 2, pp. 209–220, 1988. View at Google Scholar · View at Scopus
  2. K. S. S. Ram and P. K. Sinha, “Hygrothermal effects on the free vibration of laminated composite plates,” Journal of Sound and Vibration, vol. 158, no. 1, pp. 133–148, 1992. View at Google Scholar · View at Scopus
  3. X. L. Huang, H. S. Shen, and J. J. Zheng, “Nonlinear vibration and dynamic response of shear deformable laminated plates in hygrothermal environments,” Composites Science and Technology, vol. 64, no. 10-11, pp. 1419–1435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. R. Thangaratnam, P. Palaninathan, and J. Ramachandran, “Thermal buckling of composite laminated plates,” Computers and Structures, vol. 32, no. 5, pp. 1117–1124, 1989. View at Google Scholar · View at Scopus
  5. K. S. S. Ram and P. K. Sinha, “Hygrothermal effects on the buckling of laminated composite plates,” Composite Structures, vol. 21, no. 4, pp. 233–247, 1992. View at Google Scholar · View at Scopus
  6. B. P. Patel, M. Ganapathi, and D. P. Makhecha, “Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory,” Composite Structures, vol. 56, no. 1, pp. 25–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Srinivasan and P. Chellapandi, “Dynamic stability of rectangular laminated composite plates,” Computers and Structures, vol. 24, no. 2, pp. 233–238, 1986. View at Google Scholar · View at Scopus
  8. C. Lien-Wen and Y. Jenq-Yiing, “Dynamic stability of laminated composite plates by the finite element method,” Computers and Structures, vol. 36, no. 5, pp. 845–851, 1990. View at Google Scholar · View at Scopus
  9. Y. W. Kwon, “Finite element analysis of dynamic instability of layered composite plates using a high-order bending theory,” Computers and Structures, vol. 38, no. 1, pp. 57–62, 1991. View at Google Scholar · View at Scopus
  10. V. Balamurugan, M. Ganapathi, and T. K. Varadan, “Nonlinear dynamic instability of laminated composite plates using finite element method,” Computers and Structures, vol. 60, no. 1, pp. 125–130, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. B. P. Patel, M. Ganapathi, K. R. Prasad, and V. Balamurugan, “Dynamic instability of layered anisotropic composite plates on elastic foundations,” Engineering Structures, vol. 21, no. 11, pp. 988–995, 1999. View at Google Scholar · View at Scopus
  12. S. K. Sahu and P. K. Datta, “Dynamic stability of laminated composite curved panels with cutouts,” Journal of Engineering Mechanics, vol. 129, no. 11, pp. 1245–1253, 2003. View at Publisher · View at Google Scholar · View at Scopus