Table of Contents
Journal of Structures
Volume 2014 (2014), Article ID 493745, 15 pages
http://dx.doi.org/10.1155/2014/493745
Research Article

Effect of Soil Flexibility on Seismic Force Evaluation of RC Framed Buildings with Shear Wall: A Comparative Study of IS 1893 and EUROCODE8

Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India

Received 29 November 2013; Revised 10 February 2014; Accepted 10 February 2014; Published 30 March 2014

Academic Editor: Chris G. Karayannis

Copyright © 2014 B. R. Jayalekshmi and H. K. Chinmayi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Mylonakis, A. Nikolaou, and G. Gazetas, “Soil-pile-bridge seismic interaction: kinematic and inertial effects. Part I: soft soil,” Earthquake Engineering & Structural Dynamics, vol. 26, no. 3, pp. 337–359, 1997. View at Google Scholar · View at Scopus
  2. R. Roy and S. C. Dutta, “Differential settlement among isolated footings of building frames: the problem, its estimation and possible measures,” International Journal of Applied Mechanics and Engineering, vol. 6, pp. 165–186, 2001. View at Google Scholar
  3. R. Roy and S. C. Dutta, “Effect of soil-structure interaction on dynamic behaviour of building frames on grid foundations,” in Proceedings of the Structural Engineering Convention (SEC '01), pp. 694–703, Roorkee, India, 2001.
  4. S. H. R. Tabatabaiefar, B. Fatahi, and B. Samali, “Seismic behavior of building frames considering dynamic soil-structure interaction,” International Journal of Geomechanics, vol. 13, no. 4, pp. 409–420, 2013. View at Publisher · View at Google Scholar
  5. J. Bielak, “Dynamic behaviour of structures with embedded foundations,” Earthquake Engineering & Structural Dynamics, vol. 3, no. 3, pp. 259–274, 1975. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Stewart, G. L. Fenves, and R. B. Seed, “Seismic soil-structure interaction in buildings. I: analytical method,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 125, no. 1, pp. 26–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J. P. Stewart, R. B. Seed, and G. L. Fenves, “Seismic soil-structure interaction in buildings. II: empirical findings,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 125, no. 1, pp. 38–48, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Bhattacharya and S. C. Dutta, “Assessing lateral period of building frames incorporating soil-flexibility,” Journal of Sound and Vibration, vol. 269, no. 3–5, pp. 795–821, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Saad, F. Saddik, and S. Najjar, “Impact of soil-structure interaction on the seismic design of reinforced concrete buildings with underground stories,” in Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
  10. S. H. R. Tabatabaiefar and A. Massumi, “A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil-structure interaction,” Soil Dynamics and Earthquake Engineering, vol. 30, no. 11, pp. 1259–1267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Raychowdhury, “Seismic response of low-rise steel moment-resisting frame (SMRF) buildings incorporating nonlinear soil-structure interaction (SSI),” Engineering Structures, vol. 33, no. 3, pp. 958–967, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. K. Goel and A. K. Chopra, “Period formulas for moment-resisting frame buildings,” Journal of Structural Engineering, vol. 123, no. 11, pp. 1454–1461, 1997. View at Google Scholar · View at Scopus
  13. H. Crowley and R. Pinho, “Period-height relationship for existing European reinforced concrete buildings,” Journal of Earthquake Engineering, vol. 8, no. 1, pp. 93–119, 2004. View at Google Scholar · View at Scopus
  14. H. Crowley and R. Pinho, “Simplified equations for estimating the period of vibration of existing buildings,” in Proceedings of the 1st European Conference on Earthquake Engineering and Seismology, p. 1122, Geneva, Switzerland, 2006.
  15. C. G. Karayannis, B. A. Izzuddin, and A. S. Elnashai, “Application of adaptive analysis to reinforced concrete frames,” Journal of Structural Engineering, vol. 120, no. 10, pp. 2935–2957, 1994. View at Google Scholar · View at Scopus
  16. M. J. Favvata, M. C. Naoum, and C. G. Karayannis, “Limit states of RC structures with first floor irregularities,” Structural Engineering and Mechanics, vol. 47, no. 6, pp. 791–818, 2013. View at Google Scholar
  17. W. Pong, Z. H. Lee, and A. Lee, “A comparative study of seismic provisions between international building code 2003 and uniform building code 1997,” Earthquake Engineering and Engineering Vibration, vol. 5, no. 1, pp. 49–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Doğangün and R. Livaoǧlu, “A comparative study of the design spectra defined by Eurocode 8, UBC, IBC and Turkish Earthquake code on R/C sample buildings,” Journal of Seismology, vol. 10, no. 3, pp. 335–351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. K. Ghosh and M. Khuntia, “Impact of seismic design provisions of 2000 IBC: comparison with 1997 UBC,” in Proceeding of the 68th Annual Convention-Structural Engineers Association of California (SEAOC '99), pp. 229–254, Santa Barbra, Calif, USA, 1999.
  20. Y. Singh, V. N. Khose, and D. H. Lang, “A comparative study of code provisions for ductile RC frame buildings,” in Proceedings of the 15th World Conference on Earthquake Engineering, pp. 24–28, Lisbon, Portugal, 2012.
  21. V. N. Khose, Y. Singh, and D. H. Lang, “A comparative study of design base shear for RC buildings in selected seismic design codes,” Earthquake Spectra, vol. 28, no. 3, pp. 1047–1070, 2012. View at Publisher · View at Google Scholar
  22. N. Imashi and A. Massumi, “A comparative study of the seismic provisions of Iranian seismic code (standard no. 2800) and international building code 2003,” Asian Journal of Civil Engineering: Building and Housing, vol. 12, no. 5, pp. 579–596, 2011. View at Google Scholar · View at Scopus
  23. S. H. C. Santos, L. Zanaica, C. Bucur, S. S. Lima, and A. Arai, “Comparative study of codes for seismic design of structures,” Mathematical Modelling in Civil Engineering, vol. 9, no. 1, pp. 1–12, 2013. View at Google Scholar
  24. W. Yayong, “Comparison of seismic actions and structural design requirements in Chinese code GB 50011 and international standard ISO 3010,” Earthquake Engineering and Engineering Vibration, vol. 3, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. T. M. Nahhas, “A comparison of IBC with 1997 UBC for modal response spectrum analysis in standard-occupancy buildings,” Earthquake Engineering and Engineering Vibration, vol. 10, no. 1, pp. 99–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Pong, G. A. Gannon, and Z. H. Lee, “A comparative study of seismic provisions between the international building code 2003 and Mexico's manual of civil works 1993,” Advances in Structural Engineering, vol. 10, no. 2, pp. 153–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Malekpour, P. Seyyedi, F. Dashti, and J. F. Asghari, “Seismic performance evaluation of steel moment-resisting frames using Iranian, European and Japanese seismic codes,” Procedia Engineering, vol. 14, pp. 3331–3337, 2011. View at Publisher · View at Google Scholar
  28. H. B. Kaushik, D. C. Rai, and S. K. Jain, “A case for use of dynamic analysis in designing for earthquake forces,” Current Science, vol. 91, no. 7, pp. 874–877, 2006. View at Google Scholar · View at Scopus
  29. I. Iervolino, G. Maddaloni, and E. Cosenza, “Eurocode 8 compliant real record sets for seismic analysis of structures,” Journal of Earthquake Engineering, vol. 12, no. 1, pp. 54–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. IS: 1893 (part 1)-2002, Indian Standard Criteria for Earthquake Resistant Design of Structures, Bureau of Indian Standards, New Delhi, India, 2002.
  31. EC 8-2004, Eurocode 8: Design of Structures for Earthquake Resistance Part 1: General Rules, Seismic Actions and Rules for Buildings, European Norm. European Committee for Standardisation, Brussels, Belgium, 2004.
  32. IS: 456-2000, Indian Standard Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, India, 2000.
  33. IS: 13920-1993, Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces-Code of Practice, Bureau of Indian Standards, New Delhi, India, 1993.
  34. D. K. Maharaj, A. Amruthavalli, and K. Nishamathi, “Finite element analysis for frame foundation soil interaction,” The Electronic Journal of Geotechnical Engineering, vol. 9C, 2004. View at Google Scholar · View at Scopus
  35. D. Thangaraj and K. Ilamparuthi, “Parametric study on the performance of raft foundation with interaction of frame,” The Electronic Journal of Geotechnical Engineering, vol. 15, pp. 861–878, 2010. View at Google Scholar · View at Scopus
  36. FEMA 273-1997, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, USA, 1997.
  37. FEMA 356-2000, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, USA, 2000.