Table of Contents
Journal of Theoretical Chemistry
Volume 2013 (2013), Article ID 526569, 8 pages
http://dx.doi.org/10.1155/2013/526569
Research Article

DFT Description of Intermolecular Forces between 9-Aminoacridines and DNA Base Pairs

1Departamento de Química y Biología, Universidad del Norte, Km 5 Antigua vía a Puerto Colombia, Barranquilla, Colombia
2Grupo de Investigación Max Planck, Universidad del Atlántico, Km 7 Antigua vía a Puerto Colombia, Barranquilla, Colombia
3Universidad del Atlántico, Km 7 Antigua vía a Puerto Colombia, Barranquilla, Colombia

Received 15 March 2013; Revised 29 May 2013; Accepted 16 July 2013

Academic Editors: A. M. Lamsabhi, G. Monard, and H.-Y. Zhang

Copyright © 2013 Sandra Cotes Oyaga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Belmont, J. Bosson, T. Godet, and M. Tiano, “Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now?” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 2, pp. 139–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Charmantray, M. Demeunynck, D. Carrez et al., “4-Hydroxymethyl-3-aminoacridine derivatives as a new family of anticancer agents,” Journal of Medicinal Chemistry, vol. 46, no. 6, pp. 967–977, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. A. Heald and M. F. G. Stevens, “Antitumour polycyclic acridines. Palladium(0) mediated syntheses of quino[4,3,2-kl]acridines bearing peripheral substituents as potential telomere maintenance inhibitors,” Organic & Biomolecular Chemistry, vol. 19, pp. 3377–3389, 2003. View at Publisher · View at Google Scholar
  4. R. Hegde, P. Thimmaiah, M. C. Yerigeri, G. Krishnegowda, K. N. Thimmaiah, and P. J. Houghton, “Anti-calmodulin acridone derivatives modulate vinblastine resistance in multidrug resistant (MDR) cancer cells,” European Journal of Medicinal Chemistry, vol. 39, no. 2, pp. 161–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Kimura, A. Kato, and I. Okabayashi, “Acridine derivatives. IV. Synthesis, molecular structure, and antitumor activity of the novel 9-anilino-2,3-methylenedioxyacridines,” Journal of Heterocyclic Chemistry, vol. 29, no. 1, pp. 73–80, 1992. View at Google Scholar · View at Scopus
  6. M. Fujiwara, M. Okamoto, M. Okamoto et al., “Acridone derivatives are selective inhibitors of HIV-1 replication in chronically infected cells,” Antiviral Research, vol. 43, no. 3, pp. 189–199, 1999. View at Google Scholar · View at Scopus
  7. N. W. Luedtke, Q. Liu, and Y. Tor, “RNA—ligand interactions: affinity and specificity of aminoglycoside dimers and acridine conjugates to the HIV-1 Rev response element,” Biochemistry, vol. 42, no. 39, pp. 11391–11403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. I. B. Taraporewala, “Thiazolo[5,4-b]acridines and thiazolo[4,5-b]acridines: probable pharmacophores of antiviral and anti-tumor marine alkaloids,” Tetrahedron Letters, vol. 32, no. 1, pp. 39–42, 1991. View at Publisher · View at Google Scholar
  9. C. Korth, B. C. May, F. E. Cohen, and S. B. Prusiner, “Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9836–9841, 2001. View at Google Scholar
  10. B. C. May, A. T. Fafarman, S. B. Hong et al., “Potent inhibition of scrapie prion replication in cultured cells by bis-acridines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3416–3421, 2003. View at Google Scholar
  11. H. P. Kavitha, “Synthesis and antimicrobial activity of 1-(9′-acridinyl)-5-(4-substituted phenyl) tetrazoles,” Asian Journal of Chemistry, vol. 16, no. 2, pp. 1191–1193, 2004. View at Google Scholar · View at Scopus
  12. S. M. Sondhi, M. Johar, N. Singh, R. Shukla, R. Raghubir, and S. G. Dastidar, “Synthesis of sulpha drug acridine derivatives and their evaluation for anti-inflammatory, analgesic and anticancer activity,” Indian Journal of Chemistry B, vol. 41, no. 12, pp. 2659–2666, 2002. View at Google Scholar · View at Scopus
  13. A. Albert, Ricard Clay and Company, Ltda, 1951.
  14. I. Lasnitzki and J. H. Wilkinson, “The effect of acridine derivatives on growth and mitoses of cells in vitro,” British Journal of Cancer, vol. 2, pp. 369–375, 1948. View at Publisher · View at Google Scholar
  15. J. B. Le Pecq, M. Le Bret, J. Barbet, and B. Roques, “DNA polyintercalating drugs: DNA binding of diacridine derivatives,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 8, pp. 2915–2919, 1975. View at Google Scholar · View at Scopus
  16. J. Sebestik, I. Stibor, and J. Hlavcek, “New peptide conjugates with 9-aminoacridine: synthesis and binding to DNA,” Journal of Peptide Science, vol. 12, no. 7, pp. 472–480, 2006. View at Publisher · View at Google Scholar
  17. C. B. Carlson and P. A. Beal, “Point of sttachment and sequence of immobilized peptide-acridine conjugates control affinity for nucleic acids,” Journal of the American Chemical Society, vol. 124, no. 29, pp. 8510–8511, 2002. View at Publisher · View at Google Scholar
  18. J. Sponer, J. Leszczynski, and O. Hobza, “Nature of nucleic acid-base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers. Comparison of stacked and H-bonded base pairs,” The Journal of Physical Chemistry A, vol. 100, no. 13, pp. 5590–5596, 1996. View at Publisher · View at Google Scholar
  19. P. Hobza, M. Kabelac, J. Sponer, P. Mejzlik, and J. Vondrasek, “Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree–Fock method for interaction of DNA bases: comparison with nonempirical beyond Hartree–Fock results,” Journal of Computational Chemistry, vol. 18, no. 9, pp. 1136–1150, 1997. View at Google Scholar
  20. S. Riahi, M. R. Ganjali, A. B. Moghaddam, P. Norouzi, and M. Niasari, “Determination of the electrode potentials for substituted 1,2-dihydroxybenzenes in aqueous solution: theory and experiment,” Journal of Molecular Structure, vol. 774, no. 1–3, pp. 107–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Riahi, M. R. Ganjali, A. B. Moghaddam, and P. Norouzi, “Theoretical and experimental study of electrical and electrochemical properties of (E)-3-(4,5-dihydroxy-2-(phenylsulphonyl) phenyl) acrylic acid as a new caffeic acid derivative,” Journal of Theoretical and Computational Chemistry, vol. 6, no. 2, pp. 255–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Riahi, A. B. Moghaddam, M. R. Ganjali, and P. Norouzi, “Determination of the oxidation potentials of pyrogallol and some of its derivatives: theory and experiment,” Journal of Theoretical and Computational Chemistry, vol. 6, no. 2, pp. 331–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., “Gaussian 09, Revision A02,” Gaussian, Inc, Wallingford, UK, 2009.
  24. F. Prat, K. N. Houk, and C. S. Foote, “Effect of Guanine stacking on the oxidation of 8-oxoguanine in B-DNA,” Journal of the American Chemical Society, vol. 120, no. 4, pp. 845–846, 1998. View at Publisher · View at Google Scholar
  25. A. O. Colson and M. D. Sevilla, “Elucidation of primary radiation damage in DNA through application of Ab initio molecular orbital theory,” International Journal of Radiation Biology, vol. 67, no. 6, pp. 627–645, 1995. View at Publisher · View at Google Scholar