Table of Contents
Journal of Textiles
Volume 2013 (2013), Article ID 757319, 9 pages
http://dx.doi.org/10.1155/2013/757319
Research Article

Influence of Phase-Change Materials on Thermo-Physiological Comfort in Warm Environment

Academy of Design in Ljubljana, Associated Member of University of Primorska, Vojkova 63, 1000 Ljubljana, Slovenia

Received 28 December 2012; Revised 25 February 2013; Accepted 26 February 2013

Academic Editor: Phillip W. Gibson

Copyright © 2013 Damjana Celcar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Zhang, “Heat-storage and thermo-regulated textiles and clothing,” in Smart Fibres, Fabrics and Clothing, X. Tao, Ed., pp. 34–57, Woodhead, Cambridge, UK, 2001. View at Google Scholar
  2. E. A. McCullough and H. Shim, “The use of phase change materials in outdoor clothing,” in Intelligent Textiles and Clothing, H. R. Mattila, Ed., pp. 63–81, Woodhead, Cambridge, UK, 2006. View at Google Scholar
  3. M. Mäkinen, “Introduction to phase change materials,” in Intelligent Textiles and Clothing, H. R. Mattila, Ed., pp. 21–33, Woodhead, Cambridge, UK, 2006. View at Google Scholar
  4. W. Bendkowska, J. Tysiak, L. Grabowski, and A. Blejzyk, “Determining temperature regulating factor for apparel fabrics containing phase change material,” International Journal of Clothing Science and Technology, vol. 17, no. 3-4, pp. 209–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Bendkowska, “Intelligent textiles with PCMs,” in Intelligent Textiles and Clothing, H. R. Mattila, Ed., pp. 34–62, Woodhead, Cambridge, UK, 2006. View at Google Scholar
  6. K. Ghali, N. Ghaddar, J. Harathani, and B. Jones, “Experimental and numerical investigation of the effect of phase change materials on clothing during periodic ventilation,” Textile Research Journal, vol. 74, no. 3, pp. 205–214, 2004. View at Google Scholar · View at Scopus
  7. B. A. Ying, Y. L. Kwok, Y. Li, Q. Y. Zhu, and C. Y. Yeung, “Assessing the performance of textiles incorporating phase change materials,” Polymer Testing, vol. 23, no. 5, pp. 541–549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Hes and B. I. Lu, “A new tester for evaluation of thermal efficiency of PCM fabrics in real conditions of use,” in Proceedings of the 37th International Symposium on novelties in Textiles, Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, Ljubljana, Slovenia, June 2007.
  9. J. Kim and G. Cho, “Thermal storage/release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules,” Textile Research Journal, vol. 72, no. 12, pp. 1093–1098, 2002. View at Google Scholar · View at Scopus
  10. K. Choi, G. Cho, P. Kim, and C. Cho, “Thermal storage/release and mechanical properties of phase change materials on polyester fabrics,” Textile Research Journal, vol. 74, no. 4, pp. 292–296, 2004. View at Google Scholar · View at Scopus
  11. H. Shim, E. A. McCullough, and B. W. Jones, “Using phase change materials in clothing,” Textile Research Journal, vol. 71, no. 6, pp. 495–502, 2001. View at Google Scholar · View at Scopus
  12. H. Chung and G. Cho, “Thermal properties and physiological responses of vapor-permeable water-repellent fabrics treated with microcapsule-containing PCMs,” Textile Research Journal, vol. 74, no. 7, pp. 571–575, 2004. View at Google Scholar · View at Scopus
  13. S. X. Wang, Y. Li, H. Tokura et al., “Effect of phase change materials on temperature and moisture distributions in clothing during exercise in cold environment,” Journal of Fiber Bioengineering and Informatics, vol. 1, no. 1, pp. 29–40, 2008. View at Google Scholar
  14. D. Celcar, “Inteligentne tekstilije s fazno spremenljivimi materiali in njihov vpliv na toplotno udobje oblačil [Influence of intelligent textiles with phase-change materials on thermal comfort of clothing],” Tekstilec, vol. 55, no. 1, pp. 45–57, 2012. View at Google Scholar
  15. K. H. Umbach, “Physiological tests and evaluation models for the optimization of the performance of protective clothing,” in Environmental Ergonomics, I. B. Mekjavic, E. W. Banister, and J. B. Morrison, Eds., pp. 139–161, Taylor and Francis, London, UK, 1988. View at Google Scholar
  16. H. Meinander, “Introduction of a new test method for measuring heat and moisture transmission trough clothing materials and its application on winter work wear,” Tech. Rep. 24, VTT Publication, Espoo, Finland, 1985. View at Google Scholar
  17. International Organization for Standardization, “Textiles—physiological effects—measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test),” ISO 11092, International Organization for Standardization, Geneva, Switzerland, 1993. View at Google Scholar
  18. International Organization for Standardization, “Textiles-determination of thermal resistance, part 1: low thermal resistance,” ISO 5085-1, International Organization for Standardization, Geneva, Switzerland, 1989. View at Google Scholar
  19. M. Yoneda and S. Kawabata, “Analysis of transient heat conduction and its applications, part II,” Journal of the Textile Machinery Society of Japan, vol. 31, pp. 73–81, 1983. View at Google Scholar
  20. I. Holmér, “Thermal manikin history and applications,” European Journal of Applied Physiology, vol. 92, no. 6, pp. 614–618, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Celcar, H. Meinander, and J. Geršak, “Heat and moisture transmission properties of clothing systems evaluated by using a sweating thermal manikin under different environmental conditions,” International Journal of Clothing Science and Technology, vol. 20, no. 4, pp. 240–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. C. Parsons, Human Thermal Environments. The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance, Taylor & Francis, London, UK, 2nd edition, 2003.
  23. V. T. Bartels, “Physiological comfort of sportswear,” in Textiles in Sport, R. Shishoo, Ed., pp. 177–203, Woodhead Publishing in Association with the Textile Institute, Cambridge, UK, 2005. View at Google Scholar
  24. International Organization for Standardization, “Ergonomics—evaluation of thermal strain by physiological measurements,” ISO 9886, International Organization for Standardization, Geneva, Switzerland, 2004. View at Google Scholar
  25. International Organization for Standardization, “Ergonomics of the thermal environment—assessment of the influence of the thermal environment using subjective judgement scales,” ISO 10551, International Organization for Standardization, Geneva, Switzerland, 2004. View at Google Scholar
  26. D. Celcar, J. Geršak, and H. Meinander, “Vrednotenje toplotnih lastnosti tekstilij in njihovih kombinacij = evaluation of textile thermal properties and their combinations,” Tekstilec, vol. 53, no. 1–3, pp. 9–32, 2010. View at Google Scholar
  27. D. Celcar, “Raziskava subjektivnih ocen toplotnega udobja oblačil v toplem okolju = the research of subjective evaluation of clothing's thermal comfort evaluated in hot environment,” in 42. simpozij o novostih v tekstilstvu, “Nove tehnologije—da ali ne?”, 6. simpozij o novostih v grafiki, “Nove ideje!”, B. Simončič, Ed., Ljubljana, Slovenia, June 2011.
  28. D. Celcar, The influence of phase change materials in business garments on thermo physiological comfort [Doctoral thesis], 2008.