Table of Contents
Journal of Textiles
Volume 2013, Article ID 962751, 10 pages
http://dx.doi.org/10.1155/2013/962751
Research Article

Prediction of Color Properties of Cellulase-Treated 100% Cotton Denim Fabric

Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received 13 November 2012; Revised 21 January 2013; Accepted 5 February 2013

Academic Editor: Jiri Militky

Copyright © 2013 C. W. Kan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Gao, L. Zhang, and J. Zhao, “Application of laser technology in textile industry,” Journal of Textile Research, vol. 27, no. 8, pp. 117–120, 2006. View at Google Scholar
  2. Z. Ondogan, O. Pamuk, E. N. Ondogan, and A. Ozguney, “Improving the appearance of all textile products from clothing to home textile using laser technology,” Optics and Laser Technology, vol. 37, no. 8, pp. 631–637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. C. Chang, F. J. Chang, and H. C. Hsu, “Real-time reservoir operation for flood control using artificial intelligent techniques,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, no. 11, pp. 887–902, 2010. View at Google Scholar · View at Scopus
  4. T. W. Lau, P. C. L. Hui, F. S. F. Ng, and K. C. C. Chan, “A new fuzzy approach to improve fashion product development,” Computers in Industry, vol. 57, no. 1, pp. 82–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Wu, K. L. Yick, S. P. Ng, J. Yip, and K. H. Kong, “Parametric design and process parameter optimization for bra cup molding via response surface methodology,” Expert Systems With Applications, vol. 39, pp. 162–171, 2012. View at Google Scholar
  6. R. Beltran, L. Wang, and X. Wang, “Measuring the influence of fibre-to-fabric properties on the pilling of wool fabrics,” Journal of the Textile Institute, vol. 97, no. 3, pp. 197–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Fan and L. Hunter, “A worsted fabric expert system. II. An artificial neural network model for predicting the properties of worsted fabrics,” Textile Research Journal, vol. 68, no. 10, pp. 763–771, 1998. View at Google Scholar · View at Scopus
  8. P. K. Majumdar and A. Majumdar, “Predicting the breaking elongation of ring spun cotton yarns using mathematical, statistical, and artificial neural network models,” Textile Research Journal, vol. 74, no. 7, pp. 652–655, 2004. View at Google Scholar · View at Scopus
  9. C. M. Murrells, X. M. Tao, B. G. Xu, and K. P. S. Cheng, “An artificial neural network model for the prediction of spirality of fully relaxed single jersey fabrics,” Textile Research Journal, vol. 79, no. 3, pp. 227–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Pynckels, P. Kiekens, S. Sette, L. van Langenhove, and K. Impe, “Use of neural nets for determining the spinnability of fibres,” Journal of the Textile Institute, vol. 86, no. 3, pp. 425–437, 1995. View at Google Scholar · View at Scopus
  11. K. Hornik and M. Stinchombe, Multilayer Feed-Forward Networks Are Universal Approximators in Artificial Neural Networks: Approximation and Learning Theory, Blackwell Press, Oxford, UK, 1992.
  12. R. Hetcht-Nielsen, “Theory of the backpropagation neural networks,” in Proceedings of International Joint Conference on Neural Networks (IJCNN '89), vol. 1, pp. 593–611, 1989.
  13. G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals, and Systems, vol. 2, no. 4, pp. 303–314, 1989. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Huang and Y. F. Huang, “Bounds on the number of hidden neurons in multilayer perceptrons,” IEEE Transactions on Neural Networks, vol. 2, no. 1, pp. 47–55, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Sartori and P. J. Antsaklis, “A simple method to derive bounds on the size and to train multilayer neural networks,” IEEE Transactions on Neural Networks, vol. 2, no. 4, pp. 467–471, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. A. S. Aly, A. B. Moustafa, and A. Hebeish, “Bio-technological treatment of cellulosic textiles,” Journal of Cleaner Production, vol. 12, no. 7, pp. 697–705, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. W. Kan, C. W. M. Yuen, and S. Q. Jiang, “The effect of cellulase treatment on hydrolysis of linen,” Fibers and Polymers, vol. 7, no. 3, pp. 241–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Cavaco-Paulo, “Mechanism of cellulase action in textile processes,” Carbohydrate Polymers, vol. 37, no. 3, pp. 273–277, 1998. View at Google Scholar · View at Scopus
  19. O. N. Hung, L. J. Song, C. K. Chan, C. W. Kan, and C. W. M. Yuen, “Using artificial neural network to predict color properties of laser-treated 100% cotton fabric,” Fibers and Polymers, vol. 12, pp. 1069–1076, 2011. View at Google Scholar
  20. O. N. Hung, L. J. Song, C. K. Chan, C. W. Kan, and C. W. M. Yuen, “Predicting the laser-engraved color properties on cotton-spandex fabric by artificial neural network,” AATCC Review, vol. 12, no. 3, pp. 57–63, 2012. View at Google Scholar