Table of Contents
Journal of Thermodynamics
Volume 2011, Article ID 282354, 5 pages
Research Article

Phase Behaviour of the System Propene/Polypropene at High Pressure

1Lummus Novolen Technology GmbH, Gottlieb-Daimler-Strasse 8, 68165 Mannheim, Germany
2Institute of Chemical Engineering and Macromolecular Science, Darmstadt University of Technology, Petersenstraße 20, 64287 Darmstadt, Germany
3ExxonMobil Chemical, 5200 Bayway Drive, Baytown, TX 77520-2101, USA
4ExxonMobil Chemical Europe Inc., Hermeslaan 2,1831 Machelen, Belgium

Received 15 April 2011; Accepted 1 June 2011

Academic Editor: Tiziana Fornari

Copyright © 2011 Oliver Ruhl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Lindner and G. Luft, “Zum Einfluss des Polymermolekulargewichts auf das Phasenverhalten von Gas-Polymer-Systemen unter Hochdruck,” Die Angewandte Makromolekulare Chemie, vol. 56, pp. 99–114, 1976. View at Google Scholar
  2. R. Spahl and G. Luft, “Entmischungsverhalten von Ethylen und niedermolekularem Polyethylen,” Berichte der Bunsengesellschaft für Physikalische Chemie, vol. 85, pp. 379–384, 1981. View at Google Scholar
  3. T. W. De Loos, W. Poot, and G. A. M. Diepen, “Fluid phase equilibria in the system polyethylene + ethylene. 1. Systems of linear polyethylene + ethylene at high pressure,” Macromolecules, vol. 16, no. 1, pp. 111–117, 1983. View at Google Scholar · View at Scopus
  4. B. Folie, C. Gregg, G. Luft, and M. Radosz, “Phase equilibria of poly(ethylene-co-vinyl acetate) copolymers in subcritical and supercritical ethylene and ethylene-vinyl acetate mixtures,” Fluid Phase Equilibria, vol. 120, no. 1-2, pp. 11–37, 1996. View at Google Scholar · View at Scopus
  5. H. Dörr, M. Kinzl, and G. Luft, “The influence of inert gases on the high-pressure phase equilibria of EH-copolymer/1-hexene/ethylene-mixtures,” Fluid Phase Equilibria, vol. 178, no. 1-2, pp. 191–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. D. Whaley, H. H. Winter, and P. Ehrlich, “Phase equilibria of polypropylene with compressed propane and related systems. 1. Isotactic and atactic polypropylene with propane and propylene,” Macromolecules, vol. 30, no. 17, pp. 4882–4886, 1997. View at Google Scholar · View at Scopus
  7. J. V. Oliveira, C. Dariva, and J. C. Pinto, “High-pressure phase equilibria for polypropylene-hydrocarbon systems,” Industrial and Engineering Chemistry Research, vol. 39, no. 12, pp. 4627–4633, 2000. View at Google Scholar · View at Scopus
  8. H. Dörr, M. Kinzl, G. Luft, and O. Ruhl, “Influence of additional components on the solvent power of supercritical ethylene,” in Supercritical Fluids as Solvents and Reaction Media, G. Brunner , Ed., pp. 39–60, Elsevier, New York, NY, USA, 2004. View at Google Scholar
  9. P. H. van Konynenburg and R. L. Scott, “Critical lines and phase equilibria in binary van der Waals mixtures,” Philosophical Transactions of The Royal Society A, vol. 298, no. 1442, pp. 495–540, 1980. View at Publisher · View at Google Scholar
  10. I. Kikic and T. W. De Loos, “Thermodynamic properties at high pressure,” in High Pressure Process Technology, A. Bertucco and G. Vetter, Eds., pp. 17–63, Elsevier, Amsterdam, The Netherlands, 2001. View at Google Scholar
  11. S. J. Antoniadis, C. T. Samara, and D. N. Theodorou, “Effect of tacticity on the molecular dynamics of polypropylene melts,” Macromolecules, vol. 32, no. 25, pp. 8635–8644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. Chen and M. Radosz, “Density-tuned polyolefin phase equilibria. 1. Binary solutions of alternating poly(ethylene-propylene) in subcritical and supercritical propylene, 1-butene, and 1-hexene. Experiment and flory-patterson model,” Macromolecules, vol. 25, no. 12, pp. 3089–3096, 1992. View at Google Scholar · View at Scopus
  13. B. Folie and M. Radosz, “Phase equilibria in high-pressure polyethylene technology,” Industrial and Engineering Chemistry Research, vol. 34, no. 5, pp. 1501–1516, 1995. View at Google Scholar · View at Scopus