Table of Contents
Journal of Thermodynamics
Volume 2012, Article ID 432143, 10 pages
http://dx.doi.org/10.1155/2012/432143
Research Article

Nonequilibrium Thermodynamics of Cell Signaling

Computational Genomics Department, National Institute of Genomic Medicine, Periférico Sur 4809, Col. Arenal Tepepan, Delegación Tlalpan, 14610 Mexico City, DF, Mexico

Received 12 March 2012; Revised 7 June 2012; Accepted 9 June 2012

Academic Editor: Ali-Akbar Saboury

Copyright © 2012 Enrique Hernández-Lemus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Baylor, T. D. Lamb, and K. W. Yau, “Responses of retinal rods to single photons,” Journal of Physiology, vol. 288, pp. 613–634, 1979. View at Google Scholar · View at Scopus
  2. S. Hecht, S. Schlaer, and M. H. Pirenne, “Energy, quanta and vision,” Journal of the Optical Society of America A, vol. 38, pp. 196–208, 1942. View at Google Scholar
  3. J. Andersson, A. K. Borg-Karlson, N. Vongvanich, and C. Wiklund, “Male sex pheromone release and female mate choice in a butterfly,” Journal of Experimental Biology, vol. 210, no. 6, pp. 964–970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. F. H. Johnson, H. Eyring, and B. J. Stover, The Theory of Rate Processes in Biology and Medicine, John Wiley & Sons, New York, NY, USA, 1974.
  5. T. N. Raju, “The Nobel chronicles. 1971: Earl Wilbur Sutherland, Jr. (1915–74),” The Lancet, vol. 354, no. 9182, article 961, 1999. View at Google Scholar · View at Scopus
  6. E. Mertz, J. B. Beil, and S. C. Zimmerman, “Kinetics and thermodynamics of amine and diamine signaling by a trifluoroacetyl azobenzene reporter group,” Organic Letters, vol. 5, no. 17, pp. 3127–3130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Vallée-Bélisle, F. Ricci, and K. W. Plaxco, “Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13802–13807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Guo and H. Levine, “A thermodynamic model for receptor clustering,” Biophysical Journal, vol. 77, no. 5, pp. 2358–2365, 1999. View at Google Scholar · View at Scopus
  9. H. Qian, “Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction,” Biophysical Chemistry, vol. 105, no. 2-3, pp. 585–593, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Qian and T. C. Reluga, “Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch,” Physical Review Letters, vol. 94, no. 2, Article ID 028101, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Liu and J. M. Yuan, “Dynamic sensitivity and control analyses of metabolic insulin signalling pathways,” IET Systems Biology, vol. 4, no. 1, pp. 64–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Hu and J. M. Yuan, “Time-dependent sensitivity analysis of biological networks: coupled MAPK and PI3K signal transduction pathways,” Journal of Physical Chemistry A, vol. 110, no. 16, pp. 5361–5370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. R. Nené, J. Garca-Ojalvo, and A. Zaikin, “Speed-dependent cellular decision making in nonequilibrium genetic circuits,” PLoS ONE, vol. 7, no. 3, Article ID e32779, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Qian and S. Roy, “An information theoretical analysis of Kinase activated phosphorylation dephosphorylation cycle,” IEEE Transactions on NanoBioscience, vol. 99, no. 1, pp. 1–17, 2012. View at Publisher · View at Google Scholar
  15. M. Kurzynski, The Thermodynamic Machinery of Life, Springer, Berlin, Germany, 2006.
  16. H. Ge and H. Qian, “Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond,” Journal of the Royal Society Interface, vol. 8, no. 54, pp. 107–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. T. G. Kurtz, “The relationship between stochastic and deterministic models for chemical reactions,” Journal of Chemical Physics, vol. 57, no. 7, pp. 2976–2978, 1972. View at Google Scholar · View at Scopus
  18. M. Goyal, M. Rizzo, F. Schumacher, and C. F. Wong, “Beyond thermodynamics: drug binding kinetics could influence epidermal growth factor signaling,” Journal of Medicinal Chemistry, vol. 52, no. 18, pp. 5582–5585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Matsui, J. J. Boniface, P. Steffner, P. A. Reay, and M. M. Davis, “Kinetics of T-cell receptor binding to peptide/I-E(k) complexes: correlation of the dissociation rate with T-cell responsiveness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12862–12866, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. N. J. De Mol, F. J. Dekker, I. Broutin, M. J. E. Fischer, and R. M. J. Liskamp, “Surface plasmon resonance thermodynamic and kinetic analysis as a strategic tool in drug design. Distinct ways for phosphopeptides to plug into Src- and Grb2 SH2 domains,” Journal of Medicinal Chemistry, vol. 48, no. 3, pp. 753–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. C. Mello and D. Barrick, “An experimentally determined energy landscape for protein folding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 169–178, 2004. View at Google Scholar
  22. T. L. Hill and R. V. Chamberlin, “Extension of the thermodynamics of small systems to open metastable states: an example,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 12779–12782, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. T. L. Hill, Thermodynamics of Small Systems, Dover, New York, NY, USA, 2002.
  24. T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics, Dover, New York, NY, USA, 2004.
  25. J. M. Rubí, “Non-equilibrium thermodynamics of small-scale systems,” Energy, vol. 32, no. 4, pp. 297–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Reguera, J. M. Rubí, and J. M. G. Vilar, “The mesoscopic dynamics of thermodynamic systems,” Journal of Physical Chemistry B, vol. 109, no. 46, pp. 21502–21515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Rubí, “Mesoscopic non-equilibrium thermodynamics, atti dell'accademia peloritana dei pericolanti, classes di scienze fisiche,” Matematiche E Naturali, vol. 86, C1S081020, supplement 1, Article ID 081020, 2008. View at Google Scholar
  28. J. M. Rubí, D. Bedeaux, and S. Kjelstrup, “Unifying thermodynamic and kinetic descriptions of single-molecule processes: RNA unfolding under tension,” Journal of Physical Chemistry B, vol. 111, no. 32, pp. 9598–9602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Ritort, “The nonequilibrium thermodynamics of small systems,” Comptes Rendus Physique, vol. 8, no. 5-6, pp. 528–539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. J. Evans and D. J. Searles, “Fluctuation theorem for stochastic systems,” Physical Review E, vol. 50, no. 2, pp. 1645-–1648, 1994. View at Google Scholar
  31. G. Gallavotti and E. G. D. Cohen, “Dynamical ensembles in nonequilibrium statistical mechanics,” Physical Review Letters, vol. 74, no. 14, pp. 2694–2697, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Jarzynski, “Nonequilibrium equality for free energy differences,” Physical Review Letters, vol. 78, no. 14, pp. 2690–2693, 1997. View at Google Scholar · View at Scopus
  33. G. E. Crooks, “Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems,” Journal of Statistical Physics, vol. 90, no. 5-6, pp. 1481–1487, 1998. View at Google Scholar · View at Scopus
  34. M. N. Artyomov, J. Das, M. Kardar, and A. K. Chakraborty, “Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 48, pp. 18958–18963, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Lan and G. A. Papoian, “Evolution of complex probability distributions in enzyme cascades,” Journal of Theoretical Biology, vol. 248, no. 3, pp. 537–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Lan and G. A. Papoian, “Stochastic resonant signaling in enzyme cascades,” Physical Review Letters, vol. 98, no. 22, Article ID 228301, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover, New York, NY, USA, 1984.
  38. D. Jou, C. Pérez-García, L. S. García-Colín, M. Lapez De Haro, and R. F. Rodríguez, “Generalized hydrodynamics and extended irreversible thermodynamics,” Physical Review A, vol. 31, no. 4, pp. 2502–2508, 1985. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics, Springer, New York, NY, USA, 1998.
  40. D. Jou, J. Casas-Vazquez, and G. Lebon, “Extended irreversible thermodynamics,” Reports on Progress in Physics, vol. 51, no. 8, article 02, pp. 1105–1179, 1988. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Chen and B. C. Eu, “On the integrability of differential forms related to nonequilibrium entropy and irreversible thermodynamics,” Journal of Mathematical Physics, vol. 34, no. 7, pp. 3012–3029, 1993. View at Google Scholar · View at Scopus
  42. N. Itoh, S. Yonehara, A. Ishii et al., “The polypeptide encoded by the cDNA for human cell surface antigen fas can mediate apoptosis,” Cell, vol. 66, no. 2, pp. 233–243, 1991. View at Google Scholar · View at Scopus
  43. A. O. Hueber, M. Zörnig, D. Lyon, T. Suda, S. Nagata, and G. I. Evan, “Requirement for the CD95 receptor-ligand pathway in c-myc-induced apoptosis,” Science, vol. 278, no. 5341, pp. 1305–1309, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. http://upload.wikimedia.org/wikipedia/commons/f/f5/Fas-signalling.png.
  45. Y.-Y. Mo and W. T. Beck, “DNA damage signals induction of Fas ligand in tumor cells,” Molecular Pharmacology, vol. 55, no. 2, pp. 216–222, 1999. View at Google Scholar · View at Scopus
  46. J. Albanese, S. Meterissian, M. Kontogiannea et al., “Biologically active fas antigen and its cognate ligand are expressed on plasma membrane-derived extracellular vesicles,” Blood, vol. 91, no. 10, pp. 3862–3874, 1998. View at Google Scholar · View at Scopus
  47. T. Nguyen and J. Russell, “The regulation of FasL expression during activation-induced cell death (AICD),” Immunology, vol. 103, no. 4, pp. 426–434, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. J. D. Suever, Y. Chen, J. M. McDonald, and Y. Song, “Conformation and free energy analyses of the complex of calcium-bound calmodulin and the Fas death domain,” Biophysical Journal, vol. 95, no. 12, pp. 5913–5921, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Ota and D. A. Agard, “Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion,” Journal of Molecular Biology, vol. 351, no. 2, pp. 345–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Park, W. Im, and C. Seok, “Transmembrane signaling of chemotaxis receptor tar: insights from molecular dynamics simulation studies,” Biophysical Journal, vol. 100, no. 12, pp. 2955–2963, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. E. Pessin and A. L. Frattali, “Molecular dynamics of insulin/IGF-I receptor transmembrane signaling,” Molecular Reproduction and Development, vol. 35, no. 4, pp. 339–345, 1993. View at Google Scholar · View at Scopus
  52. K. Watanabe, K. Saito, M. Kinjo et al., “Molecular dynamics of STAT3 on IL-6 signaling pathway in living cells,” Biochemical and Biophysical Research Communications, vol. 324, no. 4, pp. 1264–1273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Kong and M. Karplus, “Signaling pathways of PDZ2 domain: a molecular dynamics interaction correlation analysis,” Proteins, vol. 74, no. 1, pp. 145–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. E. P. G. Arêas, P. G. Pascutti, S. Schreier, K. C. Mundim, and P. M. Bisch, “Molecular dynamics simulations of signal sequences at a membrane/water interface,” Journal of Physical Chemistry, vol. 99, no. 40, pp. 14885–14892, 1995. View at Google Scholar · View at Scopus
  55. M. G. Rudolph, J. G. Luz, and I. A. Wilson, “Structural and thermodynamic correlates of T cell signalling,” Annual Review of Biophysics and Biomolecular Structure, vol. 31, pp. 121–149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Ye and H. Wu, “Thermodynamic characterization of the interaction between TRAF2 and tumor necrosis factor receptor peptides by isothermal titration calorimetry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 8961–8966, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Legewie, H. Herzel, H. V. Westerhoff, and N. Blüthgen, “Recurrent design patterns in the feedback regulation of the mammalian signalling network,” Molecular Systems Biology, vol. 4, article 190, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Fujioka, K. Terai, R. E. Itoh et al., “Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes,” The Journal of Biological Chemistry, vol. 281, no. 13, pp. 8917–8926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. D. Hershko, B. W. Robb, C. J. Wray, G. J. Luo, and P. O. Hasselgren, “Superinduction of IL-6 by cycloheximide is associated with mRNA stabilization and sustained activation of p38 map kinase and NF-κB in cultured Caco-2 cells,” Journal of Cellular Biochemistry, vol. 91, no. 5, pp. 951–961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Hoffmann, A. Levchenko, M. L. Scott, and D. Baltimore, “The IκB-NF-κB signaling module: temporal control and selective gene activation,” Science, vol. 298, no. 5596, pp. 1241–1245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Lee, A. Salic, R. Krüger, R. Heinrich, and M. W. Kirschner, “The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway,” PLoS Biology, vol. 1, no. 1, article e10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. J. G. Albeck, J. M. Burke, S. L. Spencer, D. A. Lauffenburger, and P. K. Sorger, “Modeling a snap-action, variable-delay switch controlling extrinsic cell death,” PLoS Biology, vol. 6, no. 12, article e299, pp. 2831–2852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. E. Stroppolo, M. Falconi, A. M. Caccuri, and A. Desideri, “Superefficient enzymes,” Cellular and Molecular Life Sciences, vol. 58, no. 10, pp. 1451–1460, 2001. View at Google Scholar · View at Scopus
  64. C. Kiel and L. Serrano, “Cell type-specific importance of Ras-c-Raf complex association rate constants for mapk signaling,” Science Signaling, vol. 2, no. 81, article ra38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Kiel, D. Aydin, and L. Serrano, “Association rate constants of ras-effector interactions are evolutionarily conserved,” PLoS Computational Biology, vol. 4, no. 12, Article ID e1000245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Kiel and L. Serrano, “Affinity can have many faces: thermodynamic and kinetic properties of Ras effector complex formation,” Current Chemical Biology, vol. 1, pp. 215–225, 2007. View at Google Scholar
  67. J. Rosing and E. C. Slater, “The value of G degrees for the hydrolysis of ATP,” Biochim Biophys Acta, vol. 267, no. 2, pp. 275–290, 1972. View at Google Scholar
  68. R. K. Thauer, K. Jungermann, and K. Decker, “Energy conservation in chemotrophic anaerobic bacteria,” Bacteriological Reviews, vol. 41, no. 1, pp. 100–180, 1977. View at Google Scholar · View at Scopus
  69. H. Gohlke, C. Kiel, and D. A. Case, “Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes,” Journal of Molecular Biology, vol. 330, no. 4, pp. 891–913, 2003. View at Google Scholar · View at Scopus
  70. T. Misteli, “Physiological importance of RNA and protein mobility in the cell nucleus,” Histochemistry and Cell Biology, vol. 129, no. 1, pp. 5–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. P. G. Squire and M. E. Himmel, “Hydrodynamics and protein hydration,” Biochem Biophys, vol. 6, no. 1, pp. 165–177, 1979. View at Google Scholar
  72. R. Peters, “Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis,” The EMBO Journal, vol. 3, no. 8, pp. 1831–1836, 1984. View at Google Scholar · View at Scopus
  73. S. Vogel, Life's Devices: The Physical World of Animals and Plants, Princeton University Press, Princeton, NJ, USA, 1988.
  74. J. Amundson and D. Clapham, “Calcium waves,” Current Opinion in Neurobiology, vol. 3, no. 3, pp. 375–382, 1993. View at Publisher · View at Google Scholar · View at Scopus
  75. W. N. Ross, “Understanding calcium waves and sparks in central neurons,” Nature Reviews Neuroscience, vol. 13, no. 3, pp. 157–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Shahidul Islam, P. Rorsman, and P. O. Berggren, “Ca2+-induced Ca2+ release in insulin-secreting cells,” FEBS Letters, vol. 296, no. 3, pp. 287–291, 1992. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Trueta, S. Sánchez-Armass, M. A. Morales, and F. F. De-Miguel, “Calcium-induced calcium release contributes to somatic secretion of serotonin in leech Retzius neurons,” Journal of Neurobiology, vol. 61, no. 3, pp. 309–316, 2004. View at Publisher · View at Google Scholar · View at Scopus