Table of Contents
Journal of Thermodynamics
Volume 2012, Article ID 574596, 8 pages
Research Article

Numerical Analysis of Flow Field and Heat Transfer of 2D Wavy Ducts and Optimization by Entropy Generation Minimization Method

Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht 73711-13119, Iran

Received 2 July 2011; Revised 10 November 2011; Accepted 13 November 2011

Academic Editor: Felix Sharipov

Copyright © 2012 Ouldouz Nourani Zonouz and Mehdi Salmanpour. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This article provided a research for the trend of heat transfer and flow field through a 2-dimensional wavy duct. To construct a grid mesh, the physical domain was transferred to the computational domain and finite volume scheme was used for discretizing the governing equations. Through the simulation, the flow regime stayed in laminar mode. Constant temperature boundary condition has been used for solid walls. Air was used as a working fluid. Existence of waves makes some phenomenon like flow separation. Effect of Reynolds number, wave width, and wave number has been analyzed and velocity distribution, heat transfer coefficient, and tangential stress were computed for different cases. The final results were compared with the same straight duct. The entropy generation minimization method has been used for better comparison between final results.