Table of Contents
Journal of Thermodynamics
Volume 2012 (2012), Article ID 798104, 11 pages
http://dx.doi.org/10.1155/2012/798104
Research Article

Thermodynamic Properties of Real Porous Combustion Reactor under Diesel Engine-Like Conditions

1Institute of Vehicle Technology (IFZN), Faculty of Mechanical Engineering, Georg Simon Ohm University of Applied Sciences, Nuremberg, Kesslerplatz 12, 90489 Nuremberg, Germany
2Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL, UK

Received 7 June 2011; Revised 2 November 2011; Accepted 3 November 2011

Academic Editor: L. De Goey

Copyright © 2012 M. Weclas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. S. Babkin, A. A. Korzhavin, and V. A. Bunev, “Propagation of premixed gaseous explosion flames in porous media,” Combustion and Flame, vol. 87, no. 2, pp. 182–190, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. V. V. Martynenko, R. Echigo, and H. Yoshida, “Mathematical model of self-sustaining combustion in inert porous medium with phase change under complex heat transfer,” International Journal of Heat and Mass Transfer, vol. 41, no. 1, pp. 117–126, 1998. View at Google Scholar · View at Scopus
  3. A. A. M. Oliveira and M. Kaviany, “Nonequilibrium in the transport of heat and reactants in combustion in porous media,” Progress in Energy and Combustion Science, vol. 27, no. 5, pp. 523–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Trimis and F. Durst, “Combustion in a porous medium-advances and applications,” Combustion Science and Technology, vol. 121, no. 1–6, pp. 153–168, 1996. View at Google Scholar · View at Scopus
  5. F. Durst, M. Keppler, and M. Weclas, “Air-assisted nozzle applied to very compact, ultra-low emission porous medium oil-burner,” in the 3rd International Workshop on SPRAY, Lampoldshausen, Germany, 1997.
  6. M. A. Mujeebu, M. Z. Abdullah, A. A. Mohamad, and M. Z. A. Bakar, “Trends in modeling of porous media combustion,” Progress in Energy and Combustion Science, vol. 36, no. 6, pp. 627–650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Durst and M. Weclas, “Porous Medium (PM) combustion technology and its application to internal combustion engines: a new concept for a near-zero emission engine,” in Applied Optical Measurements, M. Lehner and D. Mewes, Eds., Springer, 1999. View at Google Scholar
  8. F. Durst and M. Weclas, “A new type of internal combustion engine based on the porous-medium combustion technique,” Proceedings of the Institution of Mechanical Engineers, Part D, vol. 215, no. 1, pp. 63–81, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Durst and M. Weclas, “A new concept of I.C. engine with homogeneous combustion in Porous Medium (PM),” in the 5th International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA '01), Nagoya, Japan, 2001.
  10. M. Kaviany, “In cylinder-thermal regeneration: Porous-Foam engine regenerator,” in Principles of Heat Transfer in Porous Media, Springer, New York, NY, USA, 1999. View at Google Scholar
  11. C. W. Park and M. Kaviany, “Evaporation-combustion affected by in-cylinder, reciprocating porous regenerator,” Journal of Heat Transfer, vol. 124, no. 1, pp. 184–194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Polasek and J. Macek, “Homogenization of Combustion in Cylinder of CI Engine Using Porous Medium,” SAE Technical Paper 2003-01-1 085, 2003. View at Google Scholar
  13. H. Liu, M. Xie, and D. Wu, “Simulation of a porous medium (PM) engine using a two-zone combustion model,” Applied Thermal Engineering, vol. 29, no. 14-15, pp. 3189–3197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Schlier, W. Zhang, N. Travitzky, P. Greil, J. Cypris, and M. Weclas, “Macro-cellular silicon carbide reactors for nonstationary combustion under piston engine-like conditions,” International Journal of Applied Ceramic Technology, vol. 8, no. 5, pp. 1237–1245, 2011. View at Publisher · View at Google Scholar
  15. M. Weclas, “Potential of porous media combustion technology as applied to internal combustion engines,” Journal of Thermodynamics, vol. 2010, Article ID 789262, 39 pages, 2010. View at Publisher · View at Google Scholar
  16. M. Weclas, J. Cypris, and T. M. A. Maksoud, “Combustion of Diesel sprays under real-engine like conditions: analysis of low- and high-temperature oxidation processes, ILASS – Europe 2010,” in the 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010, Paper no.ID ILASS10-40.
  17. M. Weclas, “Porous media in internal combustion engines,” in Cellular Ceramics-Structure, Manufacturing, Properties and Applications, M. Scheffler and P. Colombo, Eds., Wiley, 2005. View at Google Scholar
  18. M. Weclas, “High velocity CR Diesel jet impingement on to porous structure and its utilization for mixture homogenization in I.C. engines,” in the Drop/wall interaction: Industrial applications, Experiments and Modeling Workshop (DITICE '06), Bergamo, Italy, May 2006.
  19. M. Weclas and R. Faltermeier, “Diesel jet impingement on small cylindrical obstacles for mixture homogenization by late injection strategy,” International Journal of Engine Research, vol. 8, no. 5, pp. 399–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Weclas, “Some fundamental observations on the diesel jet destruction and spatial distribution in highly porous structures,” Journal of Porous Media, vol. 11, no. 2, pp. 125–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Weclas, “Homogenization of liquid distribution in space by Diesel jet interaction with porous structures and small obstacles,” in the 22nd European Conference on Liquid Atomization and Spray Systems, Como, Italy, September 2008, Paper no. ID ILASS08-A003.
  22. M. Weclas and J. Cypris, “"Distribution-nozzle" concept: a method for Diesel spray distribution in space for charge homogenization by late injection strategy, ILASS–Europe 2010,” in the 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010, Paper no. ID ILASS10-39.
  23. M. Weclas and J. Cypris, “Characterization of low- and high-temperature oxidation processes under non-premixed Diesel-engine like conditions,” submitted to International Journal of Engine Research.