Table of Contents
Journal of Thermodynamics
Volume 2012, Article ID 879390, 6 pages
http://dx.doi.org/10.1155/2012/879390
Research Article

Two-Dimensional Analytical Solution of the Laminar Forced Convection in a Circular Duct with Periodic Boundary Condition

Mechanical Engineering Department, Islamic Azad University, Dashtestan Branch, Dashtestan 7561888711, Iran

Received 7 August 2012; Revised 6 November 2012; Accepted 7 November 2012

Academic Editor: Ahmet Z. Sahin

Copyright © 2012 M. R. Astaraki and N. Ghiasi Tabari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Barletta and E. Zanchini, “Laminar forced convection with sinusoidal wall heat flux distribution: axially periodic regime,” Heat and Mass Transfer, vol. 31, no. 1-2, pp. 41–48, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Barletta, E. R. di Schio, G. Comini, and P. D'Agaro, “Conjugate forced convection heat transfer in a plane channel: longitudinally periodic regime,” International Journal of Thermal Sciences, vol. 47, no. 1, pp. 43–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Barletta and E. Rossi di Schio, “Effects of viscous dissipation on laminar forced convection with axially periodic wall heat flux,” Warme-und Stoffubertragung Zeitschrift, vol. 35, no. 1, pp. 9–16, 1999. View at Google Scholar · View at Scopus
  4. A. Barletta and E. Rossi di Schio, “Periodic forced convection with axial heat conduction in a circular duct,” International Journal of Heat and Mass Transfer, vol. 43, no. 16, pp. 2949–2960, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Barletta and E. Rossi di Schio, “Forced convection in a circular duct with periodic boundary conditions and axial heat conduction,” Heat and Technology, vol. 18, no. 1, pp. 93–101, 2000. View at Google Scholar · View at Scopus
  6. A. Barletta, E. Rossi di Schio, G. Comini, and P. D'Agaro, “Wall coupling effect in channel forced convection with streamwise periodic boundary heat flux variation,” International Journal of Thermal Sciences, vol. 48, no. 4, pp. 699–707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Comini, S. del Giudice, and C. Nonino, Finite Element Analysis in Heat Transfer, Taylor & Francis, Washington, DC, USA, 1994.
  8. G. Comini, G. Cortella, and M. Manzan, “Streamfunction—vorticity-based finite-element formulation for laminar-convection problems,” Numerical Heat Transfer B, vol. 28, no. 1, pp. 1–22, 1995. View at Google Scholar · View at Scopus
  9. C. Nonino and G. Comini, “An equal-order velocity-pressure algorithm for incompressible thermal flows, part 1: formulation,” Numerical Heat Transfer B, vol. 32, no. 1, pp. 1–15, 1997. View at Google Scholar · View at Scopus
  10. C. Nonino and G. Comini, “Finite-element analysis of convection problems in spatially periodic domains,” Numerical Heat Transfer B, vol. 34, no. 4, pp. 361–378, 1998. View at Google Scholar · View at Scopus
  11. G. Comini, C. Nonino, and S. Savino, “Convective heat and mass transfer under dehumidifying conditions,” in Progress in Computational Heat and Mass Transfer, R. Bennacer, Ed., pp. 711–722, Editions TEC and COC-Lavoisier, Paris, France, 2005. View at Google Scholar
  12. A. Barletta, E. Rossi di Schio, and L. Selmi, “Thermal nonequilibrium and viscous dissipation in the thermal entrance region of a Darcy flow with streamwise periodic boundary conditions,” Journal of Heat Transfer, vol. 133, no. 7, Article ID 072602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Function, Dover, New York, NY, USA, 1970.
  14. H. A. Lauwerier, “The use of confluent hypergeometric functions in mathematical physics and the solution of an eigenvalue problem,” Applied Scientific Research, vol. 2, no. 1, pp. 184–204, 1951. View at Publisher · View at Google Scholar · View at Scopus