Table of Contents
Journal of Thermodynamics
Volume 2012 (2012), Article ID 921693, 6 pages
Research Article

Phase Behavior at High Pressure of the Ternary System: CO2, Ionic Liquid and Disperse Dye

1Department of Chemical Engineering, State University of Maringá, Avenue Colombo 5790, 87020-900 Maringá PR, Brazil
2Institute for Research and Technology, ITP, PEP/UNIT, Avenue Murilo Dantas 300, 49032-490 Aracaju SE, Brazil
3Department of Chemistry, State University of Maringá, Avenue Colombo 5790, 87020-900 Maringá PR, Brazil
4Department of Chemical Process, School of Chemical Engineering, State University of Campinas, Avenue Albert Einstein 500, 13081-970 Campinas SP, Brazil

Received 27 April 2011; Accepted 22 June 2011

Academic Editor: Ramesh Gardas

Copyright © 2012 Helen R. Mazzer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


High pressure phase behavior experimental data have been measured for the systems carbon dioxide (CO2) + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6]) and carbon dioxide (CO2) + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6]) + 1-amino-2-phenoxy-4-hydroxyanthraquinone (C.I. Disperse Red 60). Measurements were performed in the pressure up to 18 MPa and at the temperature (323 to 353 K). As reported in the literature, at higher concentrations of carbon dioxide the phase transition pressure increased very steeply. The experimental data for the binary and ternary systems were correlated with good agreement using the Peng-Robinson equation of state. The amount of water in phase behavior of the systems was evaluated.