Table of Contents
Journal of Thermodynamics
Volume 2013, Article ID 375830, 6 pages
http://dx.doi.org/10.1155/2013/375830
Research Article

Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste

Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia

Received 20 February 2013; Accepted 2 August 2013

Academic Editor: Angelo Lucia

Copyright © 2013 Mulu Berhe Desta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Mathur, P. Bhatnagar, and P. Bakre, “Assessing mutagenicity of textile dyes from pali (Rajasthan) using ames bioassay,” Applied Ecology and Environmental Research, vol. 4, no. 1, pp. 111–118, 2006. View at Google Scholar · View at Scopus
  2. P. U. Singare, R. S. Lokhande, and K. U. Naik, “A case study of some lakes located at and around thane city of Maharashtra, India, with special reference to physico-chemical properties and heavy metal content of lake water,” Interdisciplinary Environmental Review, vol. 11, no. 1, pp. 90–107, 2010. View at Publisher · View at Google Scholar
  3. J. O. Esalah, M. E. Weber, and J. H. Vera, “Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate,” Canadian Journal of Chemical Engineering, vol. 78, no. 5, pp. 948–954, 2000. View at Google Scholar · View at Scopus
  4. A. I. Zouboulis, K. A. Matis, B. G. Lanara, and C. L. Neskovic, “Removal of cadmium from dilute solutions by hydroxy apatite. II. floatation studies,” Separation Science and Technology, vol. 32, no. 10, pp. 1755–1767, 1997. View at Publisher · View at Google Scholar
  5. A. I. Zouboulis, K. A. Matis, B. G. Lanara, and C. L. Neskovic, “Removal of cadmium from dilute solutions by hydroxy apatite. II: floatation studies,” in The Protocols, K. R. Fall and W. R. Stevens, Eds., vol. 1 of TCP/IP Illustrated, Addison-Wesley, Reading, Mass, USA, 2nd edition, 2011. View at Google Scholar
  6. L. Canet, M. Ilpide, and P. Seta, “Efficient facilitated transport of lead, cadmium, zinc, and silver across a flat-sheet-supported liquid membrane mediated by lasalocid A,” Separation Science and Technology, vol. 37, no. 8, pp. 1851–1860, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Dermentiz, A. Christoforidis, E. Valsamidou, A. Loucas, and K. Greece, “Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation,” International Journal of Environmental Sciences, vol. 1, no. 5, pp. 697–710, 2011. View at Google Scholar
  8. V. J. Inglezakis, M. D. Loizidou, and H. P. Grigoropoulou, “Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake,” Journal of Colloid and Interface Science, vol. 261, no. 1, pp. 49–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. T. Bolger and D. C. Szlag, “Electrochemical treatment and reuse of nickel plating rinse waters,” Environmental Progress, vol. 21, no. 3, pp. 203–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Dermentzis, “Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization,” Journal of Hazardous Materials, vol. 173, no. 1–3, pp. 647–652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Amer, F. I. Khaili, and A. M. Awwad, “Adsorption of lead, zinc and cadmium ions on polyphosphate-modified kaolinite clay,” Journal of Environmental Chemistry and Ecotoxicology, vol. 2, no. 1, pp. 1–8, 2010. View at Google Scholar
  12. N. O. Reuben and J. A. Miebaka, “Chromium (VI) adsorption rate in the treatment of liquid phase oil based drill cuttings,” African Journal of Environmental Science and Technology, vol. 2, no. 4, pp. 68–674, 2008. View at Google Scholar
  13. R. Ahmed, T. Yamin, M. S. Ansari, and S. M. Hasany, “Sorption behaviour of lead(II) ions from aqueous solution onto Haro river sand,” Adsorption Science and Technology, vol. 24, no. 6, pp. 475–486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. F. Aloko and E. A. Afolabi, “Titanium dioxide as a cathode material in a dry cell,” Leonardo Electronics Journal of Practices and Technologies, vol. 11, pp. 97–108, 2007. View at Google Scholar
  15. D. F. Aloko and E. A. Afolabi, “Model development of the adsorption of cations on manganese dioxide (MnO2) used in a Leclanche dry cell,” Leonardo Journal of Sciences, vol. 8, pp. 13–20, 2006. View at Google Scholar
  16. C. C. Chen and Y. C. Chung, “Arsenic removal using a biopolymer chitosan sorbent,” Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, vol. 41, no. 4, pp. 645–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Amin, S. Kaneco, T. Kitagawa et al., “Removal of arsenic in aqueous solutions by adsorption onto waste rice husk,” Industrial and Engineering Chemistry Research, vol. 45, no. 24, pp. 8105–8110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. M. Khaled, A Comparative study for distribution of some heavy metals in aquatic organisms fished from Alexandria region [Ph.D. thesis], Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt, 1998.
  19. K. Steve, T. Erika, T. Reynold, and M. Paul, “Activated carbon: a unit operations and processes of activated carbon,” in Environmental Engineering, vol. 25, pp. 350–749, PWS Publishing, 2nd edition, 1998. View at Google Scholar
  20. C. Ng, J. N. Losso, W. E. Marshall, and R. M. Rao, “Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system,” Bioresource Technology, vol. 85, no. 2, pp. 131–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. B. M. G. Jones, J. Ponti, A. Tavassoli, and P. A. Dixon, “Relationships of the ethiopian cereal t'ef (Eragrostis tef (Zucc.) Trotter): evidence from morphology and chromosome number,” Annals of Botany, vol. 42, no. 6, pp. 1369–1373, 1978. View at Google Scholar · View at Scopus
  22. S. H. Costanza, J. M. J. Dewet, and J. R. Harlan, “Literature review and numerical taxonomy of Eragrostis tef (T'ef),” Economic Botany, vol. 33, no. 4, pp. 413–424, 1979. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Bekele and R. N. Lester, “Biochemical assessment of the relationships of Eragrostis tef (Zucc.) trotter with some wild Eragrostis species (Gramineae),” Annals of Botany, vol. 48, no. 5, pp. 717–725, 1981. View at Google Scholar · View at Scopus
  24. S. S. Baral, S. N. Das, and P. Rath, “Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust,” Biochemical Engineering Journal, vol. 31, no. 3, pp. 216–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. H. Hameed, A. T. M. Din, and A. L. Ahmad, “Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies,” Journal of Hazardous Materials, vol. 141, no. 3, pp. 819–825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. E. Reed and M. R. Matsumoto, “Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions,” Separation Science and Technology, vol. 28, no. 13-14, pp. 2179–2195, 1993. View at Google Scholar · View at Scopus
  27. G. McKay, M. S. Otterburn, and A. G. Sweeney, “The removal of colour from effluent using various adsorbents. III. Silica: rate processes,” Water Research, vol. 14, no. 1, pp. 15–20, 1980. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Özer and H. B. Pirinççi, “The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran,” Journal of Hazardous Materials, vol. 137, no. 2, pp. 849–855, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Mittal, L. Kurup, and J. Mittal, “Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers,” Journal of Hazardous Materials, vol. 146, no. 1-2, pp. 243–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Malakootian, J. Nouri, and H. Hossaini, “Removal of heavy metals from paint industry's wastewater using Leca as an available adsorbent,” International Journal of Environmental Science and Technology, vol. 6, no. 2, pp. 183–190, 2009. View at Google Scholar · View at Scopus
  31. H. Liu, Y. Dong, H. Wang, and Y. Liu, “Adsorption behavior of ammonium by a bioadsorbent—Boston ivy leaf powder,” Journal of Environmental Sciences, vol. 22, no. 10, pp. 1513–1518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions,” Industrial and Engineering Chemistry Fundamentals, vol. 5, no. 2, pp. 212–223, 1966. View at Google Scholar · View at Scopus
  33. P. K. Malik, “Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics,” Journal of Hazardous Materials, vol. 113, no. 1–3, pp. 81–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. G. McKay, H. S. Blair, and J. R. Gardner, “Adsorption of dyes on chitin,” Journal of Applied Polymer Science, vol. 27, no. 8, pp. 3043–3057, 1982. View at Publisher · View at Google Scholar · View at Scopus