Table of Contents
Journal of Thermodynamics
Volume 2013, Article ID 909162, 10 pages
http://dx.doi.org/10.1155/2013/909162
Research Article

Second Law Analysis of a Gas-Liquid Absorption Film

University of Gabes, Engineers National School, Chemical and Process Engineering Department, Applied Thermodynamics Unit, Omar Ibn El Khattab Street, 6029 Gabès, Tunisia

Received 17 November 2012; Accepted 28 January 2013

Academic Editor: Felix Sharipov

Copyright © 2013 Nejib Hidouri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. M. Delil, “Research issues on two-phase loops for space applications,” in Proceedings of the Symposium on Space Flight Mechanics, Institute of Space and Astronautical Science, Sagamihara, Japan, 2000.
  2. G. Grossman, “Analysis of interdiffusion in film absorption,” International Journal of Heat and Mass Transfer, vol. 30, no. 1, pp. 205–208, 1987. View at Publisher · View at Google Scholar
  3. G. Grossman and M. T. Heath, “Simultaneous heat and mass transfer in absorption of gases in turbulent liquid films,” International Journal of Heat and Mass Transfer, vol. 27, no. 12, pp. 2365–2376, 1984. View at Google Scholar · View at Scopus
  4. L. P. Kholpanov and E. Y. Kenig, “Coupled mass and heat transfer in a multicomponent turbulent falling liquid film,” International Journal of Heat and Mass Transfer, vol. 36, no. 14, pp. 3647–3657, 1993. View at Google Scholar · View at Scopus
  5. B. J. C. van der Wekken and R. H. Wassenaar, “Simultaneous heat and mass transfer accompanying absorption in laminar flow over a cooled wall,” International Journal of Refrigeration, vol. 11, no. 2, pp. 70–77, 1988. View at Google Scholar · View at Scopus
  6. A. T. Conlisk and J. Mao, “Nonisothermal absorption on a horizontal cylindrical tube—1. The film flow,” Chemical Engineering Science, vol. 51, no. 8, pp. 1275–1285, 1996. View at Google Scholar · View at Scopus
  7. W. A. Miller and M. Keyhani, “Experimental analysis of local heat and mass transfer data for vertical falling film absorption,” Tech. Rep., Japan Aerospace Exploration Agency (JAXA), Tokyo, Japan, 1999, Fluid Mechanics and Thermodynamics. View at Google Scholar
  8. R. Islam, N. E. Wijeysundera, and J. C. Ho, “Simplified models for coupled heat and mass transfer in falling-film absorbers,” International Journal of Heat and Mass Transfer, vol. 47, no. 2, pp. 395–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. D. Killion and S. Garimella, “A critical review of models of coupled heat and mass transfer in falling-film absorption,” International Journal of Refrigeration, vol. 24, no. 8, pp. 755–797, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Yih and R. C. Seagrave, “Mass transfer in laminar falling liquid films with accompanying heat transfer and interfacial shear,” International Journal of Heat and Mass Transfer, vol. 23, no. 6, pp. 749–758, 1980. View at Google Scholar · View at Scopus
  11. G. Grossman, “Simultaneous heat and mass transfer in film absorption under laminar flow,” International Journal of Heat and Mass Transfer, vol. 26, no. 3, pp. 357–371, 1983. View at Google Scholar · View at Scopus
  12. M. Danish, R. K. Sharma, and S. Ali, “Gas absorption with first order chemical reaction in a laminar falling film over a reacting solid wall,” Applied Mathematical Modelling, vol. 32, no. 6, pp. 901–929, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. L. Goff, A. Ramadane, and P. L. Goff, “Modélisation des transferts couples de matière et de chaleur dans l'absorption gaz-liquide en film ruisselant laminaire,” International Journal of Heat and Mass Transfer, vol. 28, no. 11, pp. 2005–2017, 1985. View at Publisher · View at Google Scholar
  14. K. Othmer, Encyclopedia of Chemical Technology, Springer, New York, NY, USA, 4th edition, 1993.
  15. C. L. Yaws, Handbook of Thermal Conductivity, Gulf Publishing Corporation, Houston, Tex, USA, 1997.
  16. O. D. Makinde, “Exothermic explosions in a slab: a case study of series summation technique,” International Communications in Heat and Mass Transfer, vol. 31, no. 8, pp. 1227–1231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. O. B. Adeyinka and G. F. Naterer, “Optimization correlation for entropy production and energy availability in film condensation,” International Communications in Heat and Mass Transfer, vol. 31, no. 4, pp. 513–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Galović, “Non-dimensional entropy analysis of condenser and/or evaporator type heat exchangers,” International Journal of Heat Exchangers, vol. 5, no. 2, pp. 337–346, 2004. View at Google Scholar · View at Scopus
  19. K. G. Boulama, N. Galanis, and J. Orfi, “Entropy generation in a binary gas mixture in the presence of thermal and solutal mixed convection,” International Journal of Thermal Sciences, vol. 45, no. 1, pp. 51–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. G. Carrington and Z. F. Sun, “Second law analysis of combined heat and mass transfer phenomena,” International Journal of Heat and Mass Transfer, vol. 34, no. 11, pp. 2767–2773, 1991. View at Google Scholar · View at Scopus
  21. M. Magherbi, H. Abbassi, N. Hidouri, and A. Ben Brahim, “Second law analysis in convective heat and mass transfer,” Entropy, vol. 8, no. 1, pp. 1–17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Saouli and S. Aïboud-Saouli, “Second law analysis of laminar falling liquid film along an inclined heated plate,” International Communications in Heat and Mass Transfer, vol. 31, no. 6, pp. 879–886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. O. D. Makinde and E. Osalusi, “Entropy generation in a liquid film falling along an inclined porous heated plate,” Mechanics Research Communications, vol. 33, no. 5, pp. 692–698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. R. Gorla and D. M. Pratt, “Second law analysis of a non-Newtonian laminar falling liquid film along an inclined heated plate,” Entropy, vol. 9, no. 1, pp. 30–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Chermiti, N. Hidouri, and A. Ben Brahim, “Entropy generation in gas absorption into a falling liquid film,” Mechanics Research Communications, vol. 38, no. 8, pp. 586–593, 2011. View at Publisher · View at Google Scholar
  26. S. Aïboud-Saouli, S. Saouli, N. Settou, and N. Meza, “Thermodynamic analysis of gravity-driven liquid film along an inclined heated plate with hydromagnetic and viscous dissipation effects,” Entropy, vol. 8, no. 4, pp. 188–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Lee and W. K. Lee, “Physical absorption of oxygen in laminar falling films of dilute polymeric aqueous solutions,” Korean Journal of Chemical Engineering, vol. 1, no. 1, pp. 51–57, 1984. View at Publisher · View at Google Scholar · View at Scopus
  28. P. A. Nikrityuk, Computational Thermo-Fluid Dynamics: In Material Sciences and Engineering, John Wiley & Sons, New York, NY, USA, 2011.
  29. N. Gabbiye, Modeling and simulation of interface mass transfer with chemical reaction [M.S. thesis of Sciences in Chemical Engineering], Faculty of Technology, Department of Chemical Engineering, Addis Ababa University, 2004.
  30. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, New York, NY, USA, 2nd edition, 2002.
  31. R. K. Sharma, M. Danish, and S. Ali, “Solution of physical gas absorption in falling liquid film by alternate analytical methods,” Indian Chemical Engineering Journal, vol. 48, no. 3, pp. 190–193, 2006. View at Google Scholar
  32. J. R. Bourne, U. V. Stockar, and G. C. Coggan, “Gas absorption with heat effects. I. A new computational method,” Industrial and Engineering Chemistry Process Design and Development, vol. 13, no. 2, pp. 115–123, 1974. View at Google Scholar · View at Scopus
  33. J. Y. San, W. M. Worek, and Z. Lavan, “Entropy generation in combined heat and mass transfer,” International Journal of Heat and Mass Transfer, vol. 30, no. 7, pp. 1359–1369, 1987. View at Google Scholar · View at Scopus
  34. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids, John Wiley & Sons, New York, NY, USA, 1954.
  35. I. Mahmoud, Mass and Heat Transfer during Absorption of Ammonia Vapor into Ammonia-Water Mixture, Department of Energy and Materials Science, Graduate School of Science and Engineering, Saga University, Saga, Japan, 2004.