Table of Contents
Journal of Toxins
Volume 2013 (2013), Article ID 720150, 7 pages
http://dx.doi.org/10.1155/2013/720150
Research Article

Purification and Characterization of a Nonenzymatic Neurotoxin from Hippasa partita (Lycosidae) Spider Venom Gland Extract

1Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, India
2Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore 570 006, India

Received 27 December 2012; Revised 25 March 2013; Accepted 9 May 2013

Academic Editor: Maria Elena De Lima

Copyright © 2013 S. Nagaraju and K. Kemparaju. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Nagaraju, K. S. Girish, J. W. Fox, and K. Kemparaju, “‘Partitagin’ a hemorrhagic metalloprotease from Hippasa partita spider venom: role in tissue necrosis,” Biochimie, vol. 89, no. 11, pp. 1322–1331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Nagaraju, S. Devaraja, and K. Kemparaju, “Purification and properties of hyaluronidase from Hippasa partita (funnel web spider) venom gland extract,” Toxicon, vol. 50, no. 3, pp. 383–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Nagaraju, Biochemical and pharamacological characterization of spider venom [Ph.D. thesis], University of Mysore, Mysore, India, 2007.
  4. M. Siliwal and S. Molur, “Checklist of spiders (Arachnida: Araneae) of South Asia including the 2006 update of Indian spider checklist,” Zoos' Print Journal, vol. 22, no. 2, pp. 2551–2597, 2007. View at Google Scholar · View at Scopus
  5. E. Grishin, “Polypeptide neurotoxins from spider venoms,” European Journal of Biochemistry, vol. 264, no. 2, pp. 276–280, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Escoubas, S. Diochot, and G. Corzo, “Structure and pharmacology of spider venoms neurotoxins,” Biochimie, vol. 82, no. 9-10, pp. 893–907, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. R. O. Beleboni, R. O. G. Carolino, A. B. Pizzo et al., “Pharmacological and biochemical aspects of GABAergic neurotransmission: pathological and neuropsychobiological relationships,” Cellular and Molecular Neurobiology, vol. 24, no. 6, pp. 707–728, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. W. S. Skinner, M. E. Adams, G. B. Quistad et al., “Purification and characterization of two classes of neurotoxins from the funnel web spider, Agelenopsis aperta,” Journal of Biological Chemistry, vol. 264, no. 4, pp. 2150–2155, 1989. View at Google Scholar · View at Scopus
  9. M. E. Adams, V. P. Bindokas, L. Hasegawa, and V. J. Venema, “ω-Agatoxins: novel calcium channel antagonists of two subtypes from funnel web spider (Agelenopsis aperta) venom,” Journal of Biological Chemistry, vol. 265, no. 2, pp. 861–867, 1990. View at Google Scholar · View at Scopus
  10. I. M. Mintz, M. E. Adams, and B. P. Bean, “Use of spider toxins to discriminate between neuronal calcium channels,” Society for Neuroscience Abs, vol. 18, p. 9, 1992. View at Google Scholar
  11. R. Llinás, H. Moreno, M. Sugimori, M. Mohammadi, and J. Schlessinger, “Differential pre- and postsynaptic modulation of chemical transmission in the squid giant synapse by tyrosine phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 5, pp. 1990–1994, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Rezende Jr., M. N. Cordeiro, E. B. Oliveira, and C. R. Diniz, “Isolation of neurotoxic peptides from the venom of the “armed” spider Phoneutria nigriventer,” Toxicon, vol. 29, no. 10, pp. 1225–1233, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. N. Cordeiro, S. G. De Figueiredo, A. D. C. Valentim et al., “Purification and amino acid sequences of six TX3 type neurotoxins from the venom of the Brazilian “armed” spider Phoneutria nigriventer (Keys.),” Toxicon, vol. 31, no. 1, pp. 35–42, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Nagaraju, Y. H. Mahadeswaraswamy, K. S. Girish, and K. Kemparaju, “Venom from spiders of the genus Hippasa: biochemical and pharmacological studies,” Comparative Biochemistry and Physiology C, vol. 144, no. 1, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. B. K. Tikader and M. S. Malhotra, “Lycosidae (Wolf spiders),” Fauna India (Araneae), vol. 1, pp. 248–447, 1980. View at Google Scholar
  16. R. B. da Silveira, J. F. dos Santos Filho, O. C. Mangili et al., “Identification of proteases in the extract of venom glands from brown spiders,” Toxicon, vol. 40, no. 6, pp. 815–822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Bohm, R. Muhr, and R. Jaenicke, “Quantitative analysis of protein far UV circular dichroism spectra by neural networks,” Protein Engineering, vol. 5, no. 3, pp. 191–195, 1992. View at Google Scholar · View at Scopus
  19. A. L. Harvey, R. J. Marshall, and E. Karlsson, “Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations,” Toxicon, vol. 20, no. 2, pp. 379–396, 1982. View at Google Scholar · View at Scopus
  20. J. Meier and R. D. G. Theakston, “Approximate LD50 determinations of snake venoms using eight to ten experimental animals,” Toxicon, vol. 24, no. 4, pp. 395–401, 1986. View at Google Scholar · View at Scopus
  21. A. J. Quick, “Prothrombin time (one stage procedure),” in Haemorrahgic Diseases and Thrombosis, L. Fediger, Ed., pp. 391–395, Philadelphia, Pa, USA, 2nd edition, 1996. View at Google Scholar
  22. B. S. Vishwanath, R. M. Kini, and T. V. Gowda, “Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid,” Toxicon, vol. 25, no. 5, pp. 501–515, 1987. View at Google Scholar · View at Scopus
  23. H. . Kondo, S. Kondo, H. Ikezawa, and R. Murata, “Studies on the quantitative method for determination of haemorrhagic activity of Habu snake venom,” Japanese Journal of Medical Science and Biology, vol. 13, pp. 43–52, 1960. View at Google Scholar
  24. H. G. Boman and U. Kaletta, “Chromatography of rattlesnake venom A separation of three phosphodiesterases,” Biochimica et Biophysica Acta, vol. 24, pp. 619–631, 1957. View at Google Scholar · View at Scopus
  25. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  26. D. Zhang and S. Liang, “Assignment of the three disulfide bridges of huwentoxin-I, a neurotoxin from the spider Selenocosmia huwena,” Journal of Protein Chemistry, vol. 12, no. 6, pp. 735–740, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. W. D. Branton, L. Kolton, Y. N. Jan, and L. Y. Jan, “Neurotoxins from Plectreurys spider venom are potent presynaptic blockers in Drosophila,” Journal of Neuroscience, vol. 7, no. 12, pp. 4195–4200, 1987. View at Google Scholar · View at Scopus
  28. Q. Shu and S. P. Liang, “Purification and characterization of huwentoxin-II, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena,” Journal of Peptide Research, vol. 53, no. 5, pp. 486–491, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. V. P. Bindokas and M. E. Adams, “ω-Aga-I: a presynaptic calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta,” Journal of Neurobiology, vol. 20, no. 4, pp. 171–188, 1989. View at Google Scholar · View at Scopus
  30. S. P. Liang, D. Zhang, X. Pan, Q. Chen, and P. Zhou, “Properties and amino acid sequence of huwentoxin-I, a neurotoxin purified from the venom of the Chinese bird spider Selenocosmia huwena,” Toxicon, vol. 31, no. 8, pp. 969–978, 1993. View at Publisher · View at Google Scholar · View at Scopus