Table of Contents Author Guidelines Submit a Manuscript
Journal of Veterinary Medicine
Volume 2013 (2013), Article ID 231526, 9 pages
http://dx.doi.org/10.1155/2013/231526
Research Article

Effects of Essential Oils and Polyunsaturated Fatty Acids on Canine Skin Equivalents: Skin Lipid Assessment and Morphological Evaluation

1UNIVET S.L., Edificio Astrolabio, Avenue Cerdanyola 92, 08172 Sant Cugat del Vallés, Barcelona, Spain
2Department of Medicine and Animal Surgery, Veterinary Faculty, Autonomous University of Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain
3MERIAL, Avenue Tony Garnier 29, 69007 Lyon, France
4Department of Pharmacology, Therapeutics and Toxicology, Veterinary Faculty, Autonomous University of Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain

Received 19 June 2013; Revised 23 September 2013; Accepted 24 September 2013

Academic Editor: Fulvia Bovera

Copyright © 2013 S. Cerrato et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, and K. Schenke-Layland, “Skin tissue engineering—in vivo and in vitro applications,” Advanced Drug Delivery Reviews, vol. 63, no. 4, pp. 352–366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Gibbs, “In vitro irritation models and immune reactions,” Skin Pharmacology and Physiology, vol. 22, no. 2, pp. 103–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. F. Barnhart, K. M. Credille, A. Ambrus, and R. W. Dunstan, “Preservation of phenotype in an organotypic cell culture model of a recessive keratinization defect of Norfolk terrier dogs,” Experimental Dermatology, vol. 14, no. 7, pp. 481–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Serra, P. Brazís, A. Puigdemont et al., “Development and characterization of a canine skin equivalent,” Experimental Dermatology, vol. 16, no. 2, pp. 135–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. P. M. Elias, Y. Hatano, and M. L. Williams, “Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms,” Journal of Allergy and Clinical Immunology, vol. 121, no. 6, pp. 1337–1343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Proksch, J. M. Brandner, and J.-M. Jensen, “The skin: an indispensable barrier,” Experimental Dermatology, vol. 17, no. 12, pp. 1063–1072, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Hatano, M.-Q. Man, Y. Uchida et al., “Maintenance of an acidic stratum corneum prevents emergence of murine atopic dermatitis,” Journal of Investigative Dermatology, vol. 129, no. 7, pp. 1824–1835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Aburai, S. Yoshino, K. Sakai et al., “Physicochemical analysis of liposome membranes consisting of model lipids in the stratum corneum,” Journal of Oleo Science, vol. 60, no. 4, pp. 197–202, 2011. View at Google Scholar · View at Scopus
  9. A. O. Inman, T. Olivry, S. M. Dunston, N. A. Monteiro-Riviere, and H. Gatto, “Electron microscopic observations of stratum corneum intercellular lipids in normal and atopic dogs,” Veterinary Pathology, vol. 38, no. 6, pp. 720–723, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Piekutowska, D. Pin, C. A. Rème, H. Gatto, and M. Haftek, “Effects of a topically applied preparation of epidermal lipids on the stratum corneum barrier of atopic dogs,” Journal of Comparative Pathology, vol. 138, no. 4, pp. 197–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Popa, D. Pin, N. Remoué et al., “Analysis of epidermal lipids in normal and atopic dogs, before and after administration of an oral omega-6/omega-3 fatty acid feed supplement. A pilot study,” Veterinary Research Communications, vol. 35, no. 8, pp. 501–509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Ishida-Yamamoto, S. Igawa, and M. Kishibe, “Order and disorder in corneocyte adhesion,” Journal of Dermatology, vol. 38, no. 7, pp. 645–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Yamamoto, S. Serizawa, M. Ito, and Y. Sato, “Stratum corneum lipid abnormalities in atopic dermatitis,” Archives of Dermatological Research, vol. 283, no. 4, pp. 219–223, 1991. View at Google Scholar · View at Scopus
  14. L. V. Reiter, S. M. F. Torres, and P. W. Wertz, “Characterization and quantification of ceramides in the nonlesional skin of canine patients with atopic dermatitis compared with controls,” Veterinary Dermatology, vol. 20, no. 4, pp. 260–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Shimada, J.-S. Yoon, T. Yoshihara, T. Iwasaki, and K. Nishifuji, “Increased transepidermal water loss and decreased ceramide content in lesional and non-lesional skin of dogs with atopic dermatitis,” Veterinary Dermatology, vol. 20, no. 5-6, pp. 541–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Jungersted, H. Scheer, M. Mempel et al., “Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema,” Allergy, vol. 65, no. 7, pp. 911–918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Imokawa, A. Abe, K. Jin, Y. Higaki, M. Kawashima, and A. Hidano, “Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin?” Journal of Investigative Dermatology, vol. 96, no. 4, pp. 523–526, 1991. View at Google Scholar · View at Scopus
  18. Y. Tokudome, R. Uchida, T. Yokote et al., “Effect of topically applied sphingomyelin-based liposomes on the ceramide level in a three-dimensional cultured human skin model,” Journal of Liposome Research, vol. 20, no. 1, pp. 49–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Wolf and D. Wolf, “Abnormal epidermal barrier in the pathogenesis of atopic dermatitis,” Clinics in Dermatology, vol. 30, no. 3, pp. 329–334, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. K. L. Campbell and G. P. Dorn, “Effects of oral sunflower oil and olive oil on serum and cutaneous fatty acid concentrations in dogs,” Research in Veterinary Science, vol. 53, no. 2, pp. 172–178, 1992. View at Google Scholar · View at Scopus
  21. A. L. Watson, T. R. Fray, J. Bailey, C. B. Baker, S. A. Beyer, and P. J. Markwell, “Dietary constituents are able to play a beneficial role in canine epidermal barrier function,” Experimental Dermatology, vol. 15, no. 1, pp. 74–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Bensignor, D. M. Morgan, and T. Nuttall, “Efficacy of an essential fatty acid-enriched diet in managing canine atopic dermatitis: a randomized, single-blinded, cross-over study,” Veterinary Dermatology, vol. 19, no. 3, pp. 156–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Tretter and R. S. Mueller, “The influence of topical unsaturated fatty acids and essential oils on normal and atopic dogs,” Journal of the American Animal Hospital Association, vol. 47, no. 4, pp. 236–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Blaskovic, W. Rosenkrantz, A. Neuber, and R. S. Mueller, “The effect of a spot on formulation containing fatty acids and essential oils (Essential 6, Dermoscent, LCDA, France) on dogs with canine atopic dermatitis,” Veterinary Dermatology, vol. 23, supplement 1, p. 4, 2012. View at Google Scholar
  25. E. Bensignor and W. Bordeau, “The use of spot-on composed of unsaturated fatty acids & essential oils on domestic carnivores: open study,” Informations Veterinary Dermatology, vol. 10, pp. 24–28, 2005. View at Google Scholar
  26. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Google Scholar · View at Scopus
  27. M. de Pera, L. Coderch, J. Fonollosa, A. de la Maza, and J. L. Parra, “Effect of internal wool lipid liposomes on skin repair,” Skin Pharmacology and Applied Skin Physiology, vol. 13, no. 3-4, pp. 188–195, 2000. View at Google Scholar · View at Scopus
  28. S. T. Boyce and M. L. Williams, “Lipid supplemented medium induces lamellar bodies and precursors of barrier lipids in cultured analogues of human skin,” Journal of Investigative Dermatology, vol. 101, no. 2, pp. 180–184, 1993. View at Google Scholar · View at Scopus
  29. S. MacNeil, “Progress and opportunities for tissue-engineered skin,” Nature, vol. 445, no. 7130, pp. 874–880, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Welss, D. A. Basketter, and K. R. Schröder, “In vitro skin irritation: facts and future. State of the art review of mechanisms and models,” Toxicology in Vitro, vol. 18, no. 3, pp. 231–243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Y.-H. Park, J. N. Kim, S. H. Jeong et al., “Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model,” Toxicology, vol. 267, no. 1–3, pp. 178–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Batheja, Y. Song, P. Wertz, and B. Michniak-Kohn, “Effects of growth conditions on the barrier properties of a human skin equivalent,” Pharmaceutical Research, vol. 26, no. 7, pp. 1689–1700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J.-P. Magnol, D. Pin, X. Palazzi, J.-P. Lacour, Y. Gache, and G. Meneguzzi, “Characterization of a canine model of dystrophic bullous epidermolysis (DBE). Development of a gene therapy protocol,” Bulletin de l'Academie Nationale de Medecine, vol. 189, no. 1, pp. 107–121, 2005. View at Google Scholar · View at Scopus
  34. N. Y. Schürer, F. Rippke, K. Vogelsang, V. Schliep, and T. Ruzicka, “Fatty acid uptake by cultured human keratinocytes grown in medium deficient in or supplemented with essential fatty acids,” Archives of Dermatological Research, vol. 291, no. 1, pp. 47–53, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Maas-Szabowski, H.-J. Stark, and N. E. Fusenig, “Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced keratinocyte growth factor expression in resting fibroblasts,” Journal of Investigative Dermatology, vol. 114, no. 6, pp. 1075–1084, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Pasonen-Seppänen, M. T. Suhonen, M. Kirjavainen et al., “Vitamin C enhances differentiation of a continuous keratinocyte cell line (REK) into epidermis with normal stratum corneum ultrastructure and functional permeability barrier,” Histochemistry and Cell Biology, vol. 116, no. 4, pp. 287–297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. L. L. Listenberger, D. S. Ory, and J. E. Schaffer, “Palmitate-induced apoptosis can occur through a ceramide-independent pathway,” Journal of Biological Chemistry, vol. 276, no. 18, pp. 14890–14895, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Smesny, C. E. H. Schmelzer, A. Hinder et al., “Skin ceramide alterations in first-episode schizophrenia indicate abnormal sphingolipid metabolism,” Schizophrenia Bulletin, vol. 39, no. 4, pp. 933–941, 2013. View at Publisher · View at Google Scholar
  39. O. Macheleidt, H. W. Kaiser, and K. Sandhoff, “Deficiency of epidermal protein-bound ω-hydroxyceramides in atopic dermatitis,” Journal of Investigative Dermatology, vol. 119, no. 1, pp. 166–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. M. Jungersted, L. I. Hellgren, G. B. E. Jemec, and T. Agner, “Lipids and skin barrier function—a clinical perspective,” Contact Dermatitis, vol. 58, no. 5, pp. 255–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Ishikawa, H. Narita, N. Kondo et al., “Changes in the ceramide profile of atopic dermatitis patients,” Journal of Investigative Dermatology, vol. 130, no. 10, pp. 2511–2514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. T. H. Lee, J. P. Arm, C. E. Horton, A. E. Crea, J.-M. Mencia-Huerta, and B. W. Spur, “Effects of dietary fish oil lipids on allergic and inflammatory diseases,” Allergy Proceedings, vol. 12, no. 5, pp. 299–303, 1991. View at Google Scholar · View at Scopus
  43. K. S. Broughton, C. S. Johnson, B. K. Pace, M. Liebman, and K. M. Kleppinger, “Reduced asthma symptoms with n-3 fatty acid ingestion are related to 5-series leukotriene production,” American Journal of Clinical Nutrition, vol. 65, no. 4, pp. 1011–1017, 1997. View at Google Scholar · View at Scopus
  44. P. C. Calder, “Can n-3 polyunsaturated fatty acids be used as immunomodulatory agents?” Biochemical Society Transactions, vol. 24, no. 1, pp. 211–220, 1996. View at Google Scholar · View at Scopus
  45. T. Olivry, R. Marsella, and A. Hillier, “The ACVD task force on canine atopic dermatitis (XXIII): are essential fatty acids effective?” Veterinary Immunology and Immunopathology, vol. 81, no. 3-4, pp. 347–362, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. B. K. Sævik, K. Bergvall, B. R. Holm et al., “A randomized, controlled study to evaluate the steroid sparing effect of essential fatty acid supplementation in the treatment of canine atopic dermatitis,” Veterinary Dermatology, vol. 15, no. 3, pp. 137–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Popa, N. Remoue, B. Osta et al., “The lipid alterations in the stratum corneum of dogs with atopic dermatitis are alleviated by topical application of a sphingolipid-containing emulsion,” Clinical and Experimental Dermatology, vol. 37, pp. 665–667, 2012. View at Publisher · View at Google Scholar · View at Scopus