Table of Contents Author Guidelines
Journal of Veterinary Medicine
Volume 2018, Article ID 4178986, 9 pages
https://doi.org/10.1155/2018/4178986
Review Article

Probiotics for the Control of Helminth Zoonosis

School of Veterinary Medicine, Wollo University, P.O. Box 1145, Dessie, Ethiopia

Correspondence should be addressed to Abadi Amare Reda; moc.oohay@erama.idaba

Received 17 November 2017; Accepted 27 December 2017; Published 31 January 2018

Academic Editor: Antonio Ortega-Pacheco

Copyright © 2018 Abadi Amare Reda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. CDC, “Animals (Zoonotic),” URL http, http://www.cdc.gov/parasites/animals.html retrieved on Nov 8, 2016.
  2. WHO, “Zoonosis,” http://www.who.int/zoonoses/en/, 8 Nov, 2016.
  3. P. J. Hotez, M. Alvarado, M. G. Basáñez et al., “The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases,” PLoS Neglected Tropical Diseases, vol. 8, Article ID e2865, no. 7, 2014. View at Publisher · View at Google Scholar
  4. C. Hill, F. Guarner, G. Reid et al., “Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic,” Nature Reviews Gastroenterology & Hepatology, vol. 11, no. 8, pp. 506–514, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. M.-J. Butel, “Probiotics, gut microbiota and health,” Médecine et Maladies Infectieuses, vol. 44, no. 1, pp. 1–8, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Berrilli, D. Di Cave, S. Cavallero, and S. D'Amelio, “Interactions between parasites and microbial communities in the human gut.,” Frontiers in Cellular and Infection Microbiology, vol. 2, p. 141, 2012. View at Google Scholar · View at Scopus
  7. M. M. E. Temsahy, I. R. Ibrahim, S. F. Mossallam, H. Mahrous, A. A. Bary, and S. A. A. Salam, “Evaluation of newly isolated probiotics in the protection against experimental intestinal trichinellosis,” Veterinary Parasitology, vol. 214, no. 3-4, pp. 303–314, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Dvorožňáková, B. Bucková, Z. Hurníková, V. Revajová, and A. Lauková, “Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with trichinella spiralis,” Veterinary Parasitology, vol. 231, pp. 69–76, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. V. F. Del Coco, M. D. Sparo, A. Sidoti, M. Santín, J. A. Basualdo, and M. A. Córdoba, “Effects of Enterococcus faecalis CECT 7121 on Cryptosporidium parvum infection in mice,” Parasitology Research, vol. 115, no. 8, pp. 3239–3244, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Reynolds, B. B. Finlay, and R. M. Maizels, “Cohabitation in the intestine: interactions among helminth parasites, bacterial microbiota, and host immunity,” The Journal of Immunology, vol. 195, no. 9, pp. 4059–4066, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. P. R. Torgerson and C. N. L. Macpherson, “The socioeconomic burden of parasitic zoonoses: global trends,” Veterinary Parasitology, vol. 182, no. 1, pp. 79–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Finkelstein, M. D. Schleinitz, H. Carabin, and S. T. McGarvey, “Decision-model estimation of the age-specific disability weight for schistosomiasis japonica: a systematic review of the literature,” PLOS Neglected Tropical Diseases, vol. 2, no. 3, article no. e158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. WHO, “Neglected diseases schistosomiasis,” http://www.who.int/gho/neglected_diseases/schistosomiasis/en/ retrieved on Nov 25, 2016.
  14. CDC, “Schistosomiasis,” http://www.cdc.gov/parasites/schistosomiasis/disease.html retrieved on Nov15, 2016.
  15. M. T. Inobaya, R. M. Olveda, T. N. P. Chau, D. U. Olveda, and A. G. P. Ross, “Prevention and control of schistosomiasis: a current perspective,” Research and Reports in Tropical Medicine, vol. 5, pp. 65–75, 2014. View at Publisher · View at Google Scholar
  16. P. J. Hotez and A. Fenwick, “Schistosomiasis in Africa: an emerging tragedy in our new global health decade,” PLOS Neglected Tropical Diseases, vol. 3, no. 9, article e485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. De Fátima Macedo Santos, J. Vasconcelos, J. R. De Souza, E. De Medeiros Coutinho, S. M. L. Montenegro, and E. Azevedo-Ximemes, “The effect of zymomonas mobilis culture on experimental schistosoma mansoni infection,” Journal of the Brazilian Society of Tropical Medicine, vol. 37, no. 6, pp. 502–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Abdel-Salam, N. Ammar, and A. Z. Abdel-Hamid, “Effectiveness of probiotic labneh supplemented with garlic or onion oil against schistosoma mansoni in infected mice,” International Journal of Dairy Science, vol. 3, no. 2, pp. 97–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Z. Ghanem, A. M. Abdel-Salam, and A. S. Magharby, “Immunoprophylactic effect of probiotic yoghurt feeding on schistosoma mansoni-infected mice,” Polish Journal of Food and Nutrition Science, vol. 14, pp. 123–126, 2005. View at Google Scholar
  20. M. E. M. Zowail, G. Y. Osman, A. H. Mohamed, and H. M. I. ElEsawy, “Protective role of lactobacillus sporogenes (probiotic) on chromosomal aberrations and DNA fragmentation in schistosoma mansoni infected mice,” Egyptian Journal of Experimental Biology (Zoology), vol. 8, pp. 121–130, 2012. View at Google Scholar
  21. A. H. Mohamed, G. Y. Osman, M. E. M. Zowail, and H. M. I. El-Esawy, “Effect of Lactobacillus sporogenes (probiotic) on certain parasitological and molecular aspects in Schistosoma mansoni infected mice,” Journal of Parasitic Diseases, vol. 40, no. 3, pp. 823–832, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Gottstein, E. Pozio, and K. Nöckler, “Epidemiology, diagnosis, treatment, and control of trichinellosis,” Clinical Microbiology Reviews, vol. 22, no. 1, pp. 127–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Darwin Murrell and E. Pozio, “Worldwide occurrence and impact of human trichinellosis, 1986-2009,” Emerging Infectious Diseases, vol. 17, no. 12, pp. 2194–2202, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Pozio and D. S. Zarlenga, “Recent advances on the taxonomy, systematics and epidemiology of Trichinella,” International Journal for Parasitology, vol. 35, no. 11-12, pp. 1191–1204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Pozio and K. Darwin Murrell, “Systematics and epidemiology of trichinella,” Advances in Parasitology, vol. 63, pp. 367–439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Bruschi and L. Chiumiento, “Trichinella inflammatory myopathy: host or parasite strategy?” Parasites & Vectors, vol. 4, no. 1, article no. 42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. X. P. Wu, X. L. Liu, X. L. Wang et al., “Unique antigenic gene expression at different developmental stages of Trichinella pseudospiralis,” Veterinary Parasitology, vol. 194, no. 2-4, pp. 198–201, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Aranzamendi, L. Sofronic-Milosavljevic, and E. Pinelli, “Helminths: immunoregulation and inflammatory diseases—which side are Trichinella spp. and Toxocara spp. on?” Journal of Parasitology Research, vol. 2013, Article ID 329438, 11 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Ortega-Pierres, A. Vaquero-Vera, R. Fonseca-Liñán, R. M. Bermúdez-Cruz, and R. Argüello-García, “Induction of protection in murine experimental models against trichinella spiralis: an up-to-date review,” Journal of Helminthology, vol. 89, no. 5, pp. 526–539, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Martínez-Gómez, B. E. Fuentes-Castro, and C. R. Bautista-Garfias, “The intraperitoneal inoculation of lactobacillus casei in mice induces total protection against trichinella spiralis infection at low challenge doses,” Parasitology Research, vol. 109, no. 6, pp. 1609–1617, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Randazzo and S. R. Costamagna, “Effect of oral administration of probiotic agents on trichinella spiralis-infected mice,” Revista de Patologia Tropical, vol. 34, no. 2, pp. 129–135, 2005. View at Publisher · View at Google Scholar
  32. F. Martínez-Gómez, R. Santiago-Rosales, and C. Ramón Bautista-Garfias, “Effect of lactobacillus casei shirota strain intraperitoneal administration in CD1 mice on the establishment of trichinella spiralis adult worms and on IgA anti-T. spiralis production,” Veterinary Parasitology, vol. 162, no. 1-2, pp. 171–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. A. M. Overgaauw and F. van Knapen, “Veterinary and public health aspects of Toxocara spp,” Veterinary Parasitology, vol. 193, no. 4, pp. 398–403, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Despommier, “Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects,” Clinical Microbiology Reviews, vol. 16, no. 2, pp. 265–272, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. CDC, “Parasites - Toxocariasis (also known as Roundworm Infection),” http://www.cdc.gov/parasites/toxocariasis/epi.html retrieved on Nov 20, 2016.
  36. K. Taira, I. Saeed, A. Permin, and C. M. O. Kapel, “Zoonotic risk of toxocara canis infection through consumption of pig or poultry viscera,” Veterinary Parasitology, vol. 121, no. 1-2, pp. 115–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Smith and R. Noordin, “Diagnostic limitations and future trends in the serodiagnosis of human toxocariasis,” in Toxocara: The Enigmatic Parasite, C. V. Holland and H. V. Smith, Eds., pp. 89–112, CABI Publishing, CAB International, Wallingford, Oxfordshire, UK, 2006. View at Google Scholar
  38. C. Fan, H. Lan, C. Hung, W. Chung, and C. Liao, “Sero-epidemiology of Toxocara canis infection among mountain aboriginal adults in Taiwan,” The American Journal of Tropical Medicine and Hygiene, vol. 71, pp. 216–221, 2004. View at Google Scholar
  39. N. R. Pecinali, R. N. Gomes, F. C. Amendoeira et al., “Influence of murine toxocara canis infection on plasma and bronchoalveolar lavage fluid eosinophil numbers and its correlation with cytokine levels,” Veterinary Parasitology, vol. 134, no. 1-2, pp. 121–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Chiodo and J. Basualdo, “Toxocariosis,” de zoonosis IV, Asociación Argentina de Zoonosis, Buenos Aires, pp. 349–354, 2008. View at Google Scholar
  41. R. M. Maizels, “Toxocara canis: molecular basis of immune recognition and evasion,” Veterinary Parasitology, vol. 193, no. 4, pp. 365–374, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Smith, C. Holland, M. Taylor, J.-F. Magnaval, P. Schantz, and R. Maizels, “How common is human toxocariasis? towards standardizing our knowledge,” Trends in Parasitology, vol. 25, no. 4, pp. 182–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Basualdo, M. Sparo, P. Chiodo, M. Ciarmela, and M. Minvielle, “Oral treatment with a potential probiotic (Enterococcus faecalis CECT 7121) appears to reduce the parasite burden of mice infected with Toxocara canis,” Annals of Tropical Medicine and Parasitology, vol. 101, no. 6, pp. 559–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. P. G. Chiodo, M. D. Sparo, B. C. Pezzani, M. C. Minvielle, and J. A. Basualdo, “In vitro and in vivo effects of Enterococcus faecalis CECT7121 on toxocara canis,” Memórias do Instituto Oswaldo Cruz, vol. 105, no. 5, pp. 615–620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. F. D. C. de Avila, P. D. L. Telmo, L. H. R. Martins et al., “Protective effect of the probiotic saccharomyces boulardii in toxocara canis infection is not due to direct action on the larvae,” Revista do Instituto de Medicina Tropical de São Paulo, vol. 55, no. 5, pp. 363–365, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. L. F. D. C. de Avila, P. M. M. de Leon, M. Q. de Moura, M. E. A. Berne, C. J. Scaini, and F. P. Leivas Leite, “Modulation of IL-12 and IFNγ by probiotic supplementation promotes protection against Toxocara canis infection in mice,” Parasite Immunology, vol. 38, no. 5, pp. 326–330, 2016. View at Publisher · View at Google Scholar · View at Scopus
  47. CDC, “Trichuriasis (also known as Whipworm Infection),” https://www.cdc.gov/parasites/whipworm/ retrieved on Nov 22, 2016.
  48. R. L. Pullan, J. L. Smith, R. Jasrasaria, and S. J. Brooker, “Global numbers of infection and disease burden of soil transmitted helminth infections in 2010,” Parasites & Vectors, vol. 7, no. 1, article 37, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. Pan American Health Organization (PAHO), “Zoonoses and communicable diseases common to man and animals,” in Parasitoses, p. 580, Scientific and Technical Publication, 3rd edition, 2003. View at Google Scholar
  50. H. Meekums, M. B. F. Hawash, A. M. Sparks et al., “A genetic analysis of trichuris trichiura and trichuris suis from ecuador,” Parasites Vectors, vol. 8, Article ID Article no. 168, 2015. View at Google Scholar
  51. M. B. F. Hawash, M. Betson, A. Al-Jubury et al., “Whipworms in humans and pigs: origins and demography,” Parasites & Vectors, vol. 9, no. 1, article no. 1325, 2016. View at Publisher · View at Google Scholar · View at Scopus
  52. R. W. Summers, D. E. Elliot, J. F. Urban Jr., R. Thompson, and J. V. Weinstock, “Trichuris suis therapy in Crohn's disease,” Gut, vol. 54, no. 1, pp. 87–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. A. Dea-Ayuela, S. Rama-Iñiguez, and F. Bolás-Fernandez, “Enhanced susceptibility to Trichuris muris infection of B10Br mice treated with the probiotic Lactobacillus casei,” International Immunopharmacology, vol. 8, no. 1, pp. 28–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. McClemens, J. J. Kim, H. Wang et al., “Lactobacillus rhamnosus ingestion promotes innate host defense in an enteric parasitic infection.,” Clinical and vaccine immunology : CVI, vol. 20, no. 6, pp. 818–826, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. J. B. Holm, D. Sorobetea, P. Kiilerich et al., “Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of lactobacilli,” PLoS ONE, vol. 10, no. 5, Article ID e0125495, 2015. View at Publisher · View at Google Scholar · View at Scopus
  56. A.-K. Bär, N. Phukan, J. Pinheiro, and A. Simoes-Barbosa, “The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases,” PLOS Neglected Tropical Diseases, vol. 9, no. 12, Article ID e0004176, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. M. M. Zaiss and N. L. Harris, “Interactions between the intestinal microbiome and helminth parasites,” Parasite Immunology, vol. 38, no. 1, pp. 5–11, 2016. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Benzel, H. Erdur, S. Kohler et al., “Immune monitoring of Trichuris suis egg therapy in multiple sclerosis patients,” Journal of Helminthology, vol. 86, no. 3, pp. 339–347, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Rosche, K.-D. Wernecke, S. Ohlraun, J.-M. Dörr, and F. Paul, “Trichuris suis ova in relapsing-remitting multiple sclerosis and clinically isolated syndrome (TRIOMS): study protocol for a randomized controlled trial.,” Trials, vol. 14, article no. 112, 2013. View at Google Scholar · View at Scopus
  60. W. Peng, K. Yuan, M. Hu, and R. B. Gasser, “Recent insights into the epidemiology and genetics of ascaris in china using molecular tools,” Parasitology, vol. 134, no. 3, pp. 325–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Bethony, S. Brooker, M. Albonico et al., “Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm,” The Lancet, vol. 367, no. 9521, pp. 1521–1532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Walker, A. Hall, and M.-G. Basáñez, “Individual predisposition, household clustering and risk factors for human infection with Ascaris lumbricoides: new epidemiological insights,” PLOS Neglected Tropical Diseases, vol. 5, no. 4, Article ID e1047, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Nejsum, E. D. Parker Jr., J. Frydenberg et al., “Ascariasis is a zoonosis in denmark,” Journal of Clinical Microbiology, vol. 43, no. 3, pp. 1142–1148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Arizono, Y. Yoshimura, N. Tohzaka et al., “Ascariasis in Japan: Is pig-derived Ascaris infecting humans?” Japanese Journal of Infectious Diseases, vol. 63, no. 6, pp. 447-448, 2010. View at Google Scholar · View at Scopus
  65. R. P. Bendall, M. Barlow, M. Betson, J. R. Stothard, and P. Nejsum, “Zoonotic ascariasis, United Kingdom.,” Emerging Infectious Diseases, vol. 17, no. 10, pp. 1964–1966, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Hoenigl, K. Seeber, T. Valentin, I. Zollner-Schwetz, and R. Krause, “Pulmonary ascariasis in patients from wealthy countries: Shift in epidemiology?” International Journal of Infectious Diseases, vol. 16, no. 12, p. e888, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Schneider and H. Auer, “Incidence of Ascaris suum-specific antibodies in Austrian patients with suspected larva migrans visceralis (VLM) syndrome,” Parasitology Research, vol. 115, no. 3, pp. 1213–1219, 2016. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Solano-Aguilar, T. Shea-Donohue, K. Madden et al., “Feeding probiotic bacteria to swine enhances immunity to Ascaris suum,” Veterinary Immunology and Immunopathology, vol. 128, no. 1-3, pp. 293-294, 2009. View at Publisher · View at Google Scholar
  69. D. J. Thomas, R. J. Husmann, M. Villamar, T. R. Winship, R. H. Buck, and F. A. Zuckermann, “Lactobacillus rhamnosus HN001 attenuates allergy development in a pig model,” PLoS ONE, vol. 6, no. 2, Article ID e16577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Jang, S. Lakshman, A. Molokin et al., “Lactobacillus rhamnosus and Flavanol-enriched Cocoa Powder Altered the Immune Response to Infection with the Parasitic Nematode Ascarissuum in a Pig Model,” The FASEB Journal, vol. 30, no. 1, 2016. View at Google Scholar
  71. CDC, “Parasites-Hookworm,” http://www.cdc.gov/parasites/hookworm/index.html Nov 28, 2016.
  72. R. J. Traub, “Ancylostoma ceylanicum, a re-emerging but neglected parasitic zoonosis,” International Journal for Parasitology, vol. 43, no. 12-13, pp. 1009–1015, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. R. J. Traub, T. Inpankaew, C. Sutthikornchai, Y. Sukthana, and R. C. A. Thompson, “PCR-based coprodiagnostic tools reveal dogs as reservoirs of zoonotic ancylostomiasis caused by Ancylostoma ceylanicum in temple communities in Bangkok,” Veterinary Parasitology, vol. 155, no. 1-2, pp. 67–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Inpankaew, F. Schär, A. Dalsgaard et al., “High prevalence of ancylostoma ceylanicum hookworm infections in humans, Cambodia, 2012,” Emerging Infectious Diseases, vol. 20, no. 6, pp. 976–982, 2014. View at Publisher · View at Google Scholar · View at Scopus
  75. R. J. Traub, R. P. Pednekar, L. Cuttell, R. B. Porter, P. A. Abd Megat Rani, and M. L. Gatne, “The prevalence and distribution of gastrointestinal parasites of stray and refuge dogs in four locations in India,” Veterinary Parasitology, vol. 205, no. 1-2, pp. 233–238, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Gordon, J. Kurscheid, M. Jones, D. Gray, and D. McManus, “Soil-transmitted helminths in tropical australia and asia,” Tropical Medicine and Infectious Disease, vol. 2, no. 4, p. 56, 2017. View at Publisher · View at Google Scholar
  77. F. A. Smout, L. F. Skerratt, J. R. Butler, C. N. Johnson, B. C. Congdon, and R. A. Thompson, “The hookworm Ancylostoma ceylanicum: an emerging public health risk in Australian tropical rainforests and Indigenous communities,” One Health, vol. 3, pp. 66–69, 2017. View at Publisher · View at Google Scholar
  78. M. D. Murphy and A. R. Spickler, Zoonotic hookworms, November 2013, http://www.cfsph.iastate.edu/Factsheets/pdfs/hookworms.pdf.
  79. M. D. G. Coêlho, F. A. D. S. Coêlho, and I. M. D. Mancilha, “Probiotic therapy: A promising strategy for the control of canine hookworm,” Journal of Parasitology Research, vol. 2013, Article ID 430413, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. T. C. G. Oliveira-Sequeira, É. B. David, C. Ribeiro et al., “Effect of bifidobacterium animalis on mice infected with strongyloides venezuelensis,” Revista do Instituto de Medicina Tropical de São Paulo, vol. 56, no. 2, pp. 105–109, 2014. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. S. Bajagai, A. V. Klieve, P. J. Dart, and W. L. Bryden, “Probiotics in animal nutrition – Production, impact and regulation,” in FAO Animal Production and Health Paper, H. P. S. Makkar, Ed., Rome, Italy, 2016. View at Google Scholar
  82. S. C. J. De Keersmaecker, T. L. A. Verhoeven, J. Desair, K. Marchal, J. Vanderleyden, and I. Nagy, “Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid,” FEMS Microbiology Letters, vol. 259, no. 1, pp. 89–96, 2006. View at Publisher · View at Google Scholar · View at Scopus