Table of Contents
Journal of Waste Management
Volume 2013, Article ID 632163, 8 pages
http://dx.doi.org/10.1155/2013/632163
Research Article

Adsorption of Cu (II) on the Surface of Nonconventional Biomass: A Study on Forced Convective Mass Transfer in Packed Bed Column

1Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
2Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India

Received 2 January 2013; Accepted 10 February 2013

Academic Editor: Chihpin Huang

Copyright © 2013 Vishal Mishra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Detailed data for 2011 priority list of hazardous substances ATSDR, division of toxicology and environmental medicine.
  2. G. Blazquez, M. A. Martín-Lara, E. Dionisio-Ruiz, G. Tenorio, and M. Calero, “Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark,” Journal of Industrial and Engineering Chemistry, vol. 17, no. 5-6, pp. 824–833, 2011. View at Publisher · View at Google Scholar
  3. G. Bayramoglu, A. G. Yakup, and N. Adiguzel, “Removal of Ni (II) and Cu (II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil,” Chemosphere, vol. 89, no. 3, pp. 302–309, 2012. View at Publisher · View at Google Scholar
  4. T. Şahana, H. Ceylan, N. Şahiner, and N. Aktaşa, “Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor,” Bioresource Technology, vol. 101, no. 12, pp. 4520–4526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Hashim, S. Mukhopadhyay, J. N. Sahu, and B. Sengupta, “Remediation technologies for heavy metal contaminated groundwater,” Journal of Environmental Management, vol. 92, no. 10, pp. 2355–2388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. M. Gadd, “Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 1, pp. 13–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Sari and M. Tuzen, “Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies,” Journal of Hazardous Materials, vol. 160, no. 2-3, pp. 349–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Sari, D. Mendil, M. Tuzen, and M. Soylak, “Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies,” Chemical Engineering Journal, vol. 144, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. O. D. Uluozlu, A. Sari, M. Tuzen, and M. Soylak, “Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass,” Bioresource Technology, vol. 99, no. 8, pp. 2972–2980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Mishra, C. Balomajumder, and V. K. Agarwal, “Sorption of Zn (II) ion onto the surface of activated carbon derived from eucalyptus bark saw dust from industrial wastewater: isotherm, kinetics, mechanistic modeling, and thermodynamics,” Desalination and Water Treatment, vol. 46, no. 1–3, pp. 332–352, 2012. View at Publisher · View at Google Scholar
  11. V. Mishra, C. Balomajumder, and V. K. Agarwal, “Zn(II) ion biosorption onto surface of eucalyptus leaf biomass: isotherm, Kinetic, and mechanistic modeling,” Clean—Soil, Air, Water, vol. 38, no. 11, pp. 1062–1073, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Basha, S. J. Selvi, E. Ramasamy, and S. Chellammal, “Removal of arsenic and sulphate from the copper smelting industrial effluent,” Chemical Engineering Journal, vol. 141, no. 1–3, pp. 89–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Mishra, C. Balomajumder, and V. K. Agarwal, “Simultaneous adsorption and bioaccumulation: a study on continuous mass transfer in column reactor,” Environmental Progress and Sustainable Energy, 2012. View at Publisher · View at Google Scholar
  14. V. Mishra, C. Balomajumder, and V. K. Agarwal, “Kinetics, mechanistic and thermodynamics of Zn (II) Ion sorption: a modeling approach,” Clean Soil Air and Water, vol. 40, no. 7, pp. 718–727, 2012. View at Publisher · View at Google Scholar
  15. R. A. Anayurt, A. Sari, and M. Tuzen, “Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass,” Chemical Engineering Journal, vol. 151, no. 1–3, pp. 255–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Sari and M. Tuzen, “Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1004–1011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Singh, D. Kumar, and J. P. Gaur, “Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor,” Water Research, vol. 46, no. 3, pp. 779–7788, 2012. View at Publisher · View at Google Scholar
  18. H. Kasaini and R. K. Mbaya, “Continuous adsorption of Pt ions in a batch reactor and packed-bed column,” Hydrometallurgy, vol. 97, no. 1-2, pp. 111–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. I. C. Ostroski, M. A. S. D. Barros, E. A. Silva, J. H. Dantas, P. A. Arroyo, and O. C. M. Lima, “A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 1404–1412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Apiratikul, V. Madacha, and P. Pavasant, “Kinetic and mass transfer analyses of metal biosorption by Caulerpa lentillifera,” Desalination, vol. 278, no. 1–3, pp. 303–311, 2011. View at Publisher · View at Google Scholar
  21. G. Blázquez, M. A. Martín-Lara, E. Dionisio-Ruiz, G. Tenorio, and M. Calero, “Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark,” Journal of Industrial and Engineering Chemistry, vol. 17, no. 5-6, pp. 824–833, 2012. View at Publisher · View at Google Scholar