Table of Contents
Journal of Waste Management
Volume 2013 (2013), Article ID 732759, 7 pages
http://dx.doi.org/10.1155/2013/732759
Review Article

Vermicomposting: Tool for Sustainable Ruminant Manure Management

Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia

Received 16 September 2013; Accepted 26 November 2013

Academic Editor: Dimitris P. Makris

Copyright © 2013 A. Nasiru et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Tamminga, “Nutrition management of dairy cows as a contribution to pollution control,” Journal of Dairy Science, vol. 75, no. 1, pp. 345–357, 1992. View at Publisher · View at Google Scholar
  2. H. Menzi, O. Oenema, C. Burton et al., “Impacts of intensive livestock production and manure management on the environment,” in Livestock in a Changing Landscape Drivers, Consequences and Responses, Henning Steinfeld, H. A. Mooney, F. Schneider, and L. E. Neville, Eds., vol. 1, pp. 139–163, Island Press, 2010. View at Google Scholar
  3. G. Zervas and E. Tsiplakou, “An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock,” Atmospheric Environment, vol. 49, pp. 13–23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Hao, M. B. Benke, C. Li, F. J. Larney, K. A. Beauchemin, and T. A. McAllister, “Nitrogen transformations and greenhouse gas emissions during composting of manure from cattle fed diets containing corn dried distillers grains with solubles and condensed tannins,” Animal Feed Science and Technology, vol. 166-167, pp. 539–549, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Powell, M. A. Wattiaux, G. A. Broderick, V. R. Moreira, and M. D. Casler, “Dairy diet impacts on fecal chemical properties and nitrogen cycling in soils,” Soil Science Society of America Journal, vol. 70, no. 3, pp. 786–794, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Powell, G. A. Broderick, J. H. Grabber, and U. C. Hymes-Fecht, “Technical note: effects of forage protein-binding polyphenols on chemistry of dairy excreta,” Journal of Dairy Science, vol. 92, no. 4, pp. 1765–1769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Lazcano, M. Gómez-Brandón, and J. Domínguez, “Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure,” Chemosphere, vol. 72, no. 7, pp. 1013–1019, 2008. View at Publisher · View at Google Scholar
  8. W. Sheldrick, J. K. Syers, and J. Lingard, “Contribution of livestock excreta to nutrient balances,” Nutrient Cycling in Agroecosystems, vol. 66, no. 2, pp. 119–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Dominguez and C. A. Edwards, “Relationships between composting and vermicomposting,” in Vermiculture Technology Earthworms, Organic Wastes, and Environmental Management, C. A. Edwards, N. Q. Arancon, and R. Sherman, Eds., pp. 11–26, Taylor & Francis, New York, NY, USA, 2011. View at Google Scholar
  10. X. Hao, C. Chang, F. J. Larney, and G. R. Travis, “Greenhouse gas emissions during cattle feedlot manure composting,” Journal of Environmental Quality, vol. 30, no. 2, pp. 376–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. “FAO statistical database,” Food and Agricultural Organisation, 2013, http://faostat3.fao.org/home/index.html#download.
  12. S. G. Sommer and N. J. Hutchings, “Ammonia emission from field applied manure and its reduction—invited paper,” European Journal of Agronomy, vol. 15, no. 1, pp. 1–15, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. T. D. Nennich, J. H. Harrison, L. M. VanWieringen et al., “Prediction of manure and nutrient excretion from dairy cattle,” Journal of Dairy Science, vol. 88, no. 10, pp. 3721–3733, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Standard, D384.2, Manure Production and Characteristics, ASABE, St. Joseph, Mich, USA, 2005.
  15. C. A. Rotz, D. R. Buckmaster, and J. W. Comerford, “A beef herd model for simulating feed intake, animal performance, and manure excretion in farm systems,” Journal of Animal Science, vol. 83, no. 1, pp. 231–242, 2005. View at Google Scholar · View at Scopus
  16. V. A. Wilkerson, D. R. Mertens, and D. P. Casper, “Prediction of excretion of manure and nitrogen by Holstein dairy cattle,” Journal of Dairy Science, vol. 80, no. 12, pp. 3193–3204, 1997. View at Google Scholar · View at Scopus
  17. S. Fernández-Rivera, T. Williams, P. Hiernaux, and J. Powell, “Faecal excretion by ruminants and manure availability for crop production in semi-arid West Africa,” 1995.
  18. P. A. Konandreas and F. M. Anderson, Cattle Herd Dynamics: An Integer and Stochastic Model for Evaluating Production Alternatives, ILRI (aka ILCA and ILRAD), 1982.
  19. P. C. Hoffman, C. R. Simson, and M. Wattiaux, “Limit feeding of gravid holstein heifers: effect on growth, manure nutrient excretion, and subsequent early lactation performance,” Journal of Dairy Science, vol. 90, no. 2, pp. 946–954, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. C. Somda, J. M. Powell, S. Fernandez-Rivera, and J. Reed, “Feed factors affecting nutrient excretion by ruminants and the fate of nutrients when applied to soil,” in Livestock and Sustainable Nutrient Cycling in Mixed Farming Systems of Sub-Saharan Africa, J. M. Powell, S. Fernández-Rivera, T. O. Williams, and C. Renard, Eds., ILRI (aka ILCA and ILRAD), Addis Ababa, Ethiopia, 1995. View at Google Scholar
  21. M. Mathot, V. Decruyenaere, D. Stilmant, and R. Lambert, “Effect of cattle diet and manure storage conditions on carbon dioxide, methane and nitrous oxide emissions from tie-stall barns and stored solid manure,” Agriculture, Ecosystems and Environment, vol. 148, pp. 134–144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. O. Petersen, S. G. Sommer, F. Béline et al., “Recycling of livestock manure in a whole-farm perspective,” Livestock Science, vol. 112, no. 3, pp. 180–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Kebreab, J. France, J. A. Mills, R. Allison, and J. Dijkstra, “A dynamic model of N metabolism in the lactating dairy cow and an assessment of impact of N excretion on the environment,” Journal of Animal Science, vol. 80, no. 1, pp. 248–259, 2002. View at Google Scholar · View at Scopus
  24. D. Bravo, D. Sauvant, C. Bogaert, and F. Meschy, “III. Quantitative aspects of phosphorus excretion in ruminants,” Reproduction Nutrition Development, vol. 43, no. 3, pp. 285–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. M. Vitti and E. Kebreab, Phosphorus and Calcium Utilization and Requirements in Farm Animals, CABI, New York, NY, USA, 2010.
  26. E. J. Underwood and N. F. Suttle, The Mineral Nutrition of Livestock, CABI, New York, NY, USA, 1999.
  27. O. Oenema, D. Oudendag, and G. L. Velthof, “Nutrient losses from manure management in the European Union,” Livestock Science, vol. 112, no. 3, pp. 261–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Oenema, A. Bannink, S. G. Sommer, J. W. van Groenigen, and G. L. Velthof, “Gaseous nitrogen emissions from livestock farming systems,” in Nitrogen in the Environment, J. L. Hatfield and R. F. Follett, Eds., chapter 12, pp. 395–441, Academic Press, San Diego, Calif, USA, 2nd edition, 2008. View at Publisher · View at Google Scholar
  29. J. Martinez, P. Dabert, S. Barrington, and C. Burton, “Livestock waste treatment systems for environmental quality, food safety, and sustainability,” Bioresource Technology, vol. 100, no. 22, pp. 5527–5536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. P. Bernal, J. A. Alburquerque, and R. Moral, “Composting of animal manures and chemical criteria for compost maturity assessment. A review,” Bioresource Technology, vol. 100, no. 22, pp. 5444–5453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Amon, V. Kryvoruchko, T. Amon, and S. Zechmeister-Boltenstern, “Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment,” Agriculture, Ecosystems and Environment, vol. 112, no. 2-3, pp. 153–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. R. Külling, H. Menzi, T. F. Kröber et al., “Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content,” Journal of Agricultural Science, vol. 137, no. 2, pp. 235–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Benito, A. Masaguer, A. Moliner, N. Arrigo, and R. M. Palma, “Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost,” Biology and Fertility of Soils, vol. 37, no. 3, pp. 184–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Goyal, S. K. Dhull, and K. K. Kapoor, “Chemical and biological changes during composting of different organic wastes and assessment of compost maturity,” Bioresource Technology, vol. 96, no. 14, pp. 1584–1591, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. N. A. El Kader, P. Robin, J. M. Paillat, and P. Leterme, “Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting,” Bioresource Technology, vol. 98, no. 14, pp. 2619–2628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Peigné and P. Girardin, “Environmental impacts of farm-scale composting practices,” Water, Air, and Soil Pollution, vol. 153, no. 1–4, pp. 45–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Eghball, J. F. Power, J. E. Gilley, and J. W. Doran, “Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure,” Journal of Environmental Quality, vol. 26, no. 1, pp. 189–193, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. P. M. Ndegwa and S. A. Thompson, “Integrating composting and vermicomposting in the treatment and bioconversion of biosolids,” Bioresource Technology, vol. 76, no. 2, pp. 107–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Dominguez, “The microbiology of vermicomposting,” in Vermiculture Technology Earthworms, Organic Wastes, and Environmental Management, C. A. Edwards, N. Q. Arancon, and R. Sherman, Eds., 2011. View at Google Scholar
  40. J. Dominguez, C. Edwards, and S. Subler, “Comparison of vermicomposting and composting,” BioCycle, vol. 38, no. 4, pp. 57–59, 1997. View at Google Scholar
  41. R. M. Atiyeh, J. Domínguez, S. Subler, and C. A. Edwards, “Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth,” Pedobiologia, vol. 44, no. 6, pp. 709–724, 2000. View at Publisher · View at Google Scholar
  42. V. K. Garg, Y. K. Yadav, A. Sheoran, S. Chand, and P. Kaushik, “Livestock excreta management through vermicomposting using an epigeic earthworm Eisenia foetida,” Environmentalist, vol. 26, no. 4, pp. 269–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Pathma and N. Sakthivel, “Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential,” SpringerPlus, vol. 1, article 26, 2012. View at Publisher · View at Google Scholar
  44. E. Albanell, J. Plaixats, and T. Cabrero, “Chemical changes during vermicomposting (Eisenia fetida) of sheep manure mixed with cotton industrial wastes,” Biology and Fertility of Soils, vol. 6, no. 3, pp. 266–269, 1988. View at Publisher · View at Google Scholar · View at Scopus
  45. R. P. Singh, A. Embrandiri, M. H. Ibrahim, and N. Esa, “Management of biomass residues generated from palm oil mill: vermicomposting a sustainable option,” Resources, Conservation and Recycling, vol. 55, no. 4, pp. 423–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Vinceslas-Akpa and M. Loquet, “Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida andrei): chemical analysis and 13C CPMAS NMR spectroscopy,” Soil Biology and Biochemistry, vol. 29, no. 3-4, pp. 751–758, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Chattopadhyay, “Use of vermicomposting biotechnology for recycling organic wastes in agriculture,” International Journal of Recycling of Organic Waste in Agriculture, vol. 1, no. 1, pp. 1–6, 2012. View at Publisher · View at Google Scholar