Table of Contents
Journal of Waste Management
Volume 2013 (2013), Article ID 825063, 7 pages
http://dx.doi.org/10.1155/2013/825063
Research Article

Investigation into River Sediments Toxicity as a Result of Inappropriate Waste Disposal

Center for Development of Nuclear Technology (CDTN) Avenida Antonio Carlos 6627, Campus UFMG, 31270901 Belo Horizonte, MG, Brazil

Received 30 November 2012; Revised 4 February 2013; Accepted 8 February 2013

Academic Editor: Brajesh Dubey

Copyright © 2013 Lívia R. Souza and Ana Cláudia Q. Ladeira. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. Trindade, A. H. Horn, and E. V. Ribeiro, “Heavy metal concentrations in sediments of the São Francisco river between Tres Marias and Pirapora-MG: geochemistry and classification of environmental risk,” Geonomos, vol. 20, no. 1, pp. 64–75, 2012 (Portuguese). View at Google Scholar
  2. M. R. Oliveira, Investigação da Contaminação por Metais Pesados da Água e do Sedimento de Corrente nas margens do Rio São Francisco e tributários, a jusante da Represa da Cemig, no município de Três Marias, Minas Gerais [D. Sc. Thesis], Universidade Federal de Minas Gerais, Brazil, Minas Gerais, Brazil, 2010.
  3. V. K. Saraiva, M. R. L. Do Nascimento, H. E. L. Palmieri, and V. M. F. Jacomino, “Evaluation of sediment quality—case study: sub-watershed of espírito santo stream, affluent of the São Francisco River,” Quimica Nova, vol. 32, no. 8, pp. 1995–2002, 2009 (Portuguese). View at Google Scholar · View at Scopus
  4. M. V. T. Gomes, A. S. Costa, C. A. B. Garcia, E. A. Passos, and J. Do Patrocínio Hora Alves, “Concentrations and geochemical associations of Pb and Zn in sediments of the river São Francisco impacted by wastes from industrial zinc production,” Quimica Nova, vol. 33, no. 10, pp. 2088–2092, 2010 (Portuguese). View at Google Scholar · View at Scopus
  5. U.S. EPA, “Draft Analytical Method for Determination of Acid Volatile Sulfide and Selected Simultaneously Extractable Metals in Sediment,” EPA 821-R-91-100, Office of Research and Development, Washington, DC, USA, 1991. View at Google Scholar
  6. T. Jong and D. L. Parry, “Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis,” Journal of Environmental Monitoring, vol. 6, no. 4, pp. 278–285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Di Toro, J. D. Mahony, D. J. Hansen, K. J. Scott, A. R. Carlson, and G. T. Ankley, “Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments,” Environmental Science and Technology, vol. 26, no. 1, pp. 96–101, 1992. View at Google Scholar · View at Scopus
  8. U.S. EPA, “Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc),” EPA 600-R-02-011, Office of Research and Development, Washington, DC, USA, 2005. View at Google Scholar
  9. J. W. Morse and D. Rickard, “Chemical dynamics of sedimentary acid volatile sulfide,” Environmental Science & Technology, vol. 38, no. 7, pp. 131A–136A, 2004. View at Google Scholar
  10. CCME-Canadian Council of Ministers of the Environment, “Canadian Sediments Quality Guidelines for the Protection of Aquatic Life: Summary tables update,” Canadian Environmental Quality Guidelines, 2002.
  11. E. Fagnani, J. R. Guimarães, A. A. Mozeto, and P. S. Fadini, “Acid volatile sulfides and simultaneously extracted metals in the assessment of freshwater sediments,” Química Nova, vol. 34, no. 9, pp. 1618–1628, 2011 (Portuguese). View at Google Scholar
  12. G. A. Burton, L. T. H. Nguyen, C. Janssen et al., “Field validation of sediment zinc toxicity,” Environmental Toxicology and Chemistry, vol. 24, no. 3, pp. 541–553, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. D. Mahony, D. M. Di Toro, A. M. Gonzalez et al., “Partitioning of metals to sediment organic carbon,” Environmental Toxicology and Chemistry, vol. 15, no. 12, pp. 2187–2197, 1996. View at Google Scholar · View at Scopus
  14. U.S. Environmental Protection Agency, “Equilibrium partitioning approach to predicting metal bioavailability in sediments and the derivation of sediment quality criteria for metals. Briefing Report to the Science Advisory Board,” EPA 822-D-94-002, Office of Water, Office of Research and Development, Washington, DC, USA, 1994. View at Google Scholar
  15. D. F. Almeida, A. H. Martins, and J. G. Tundisi, “Weight-of-evidence on environmental impact assessment of metal contaminated sediments in the São Francisco River (Três Marias, Minas Gerais, Brazil)—a case study,” Brazilian Journal of Biology, vol. 71, no. 4, pp. 961–973, 2011. View at Google Scholar
  16. A. Misi, S. S. S. Iyer, C. E. S. Coelho et al., “Sediment hosted lead-zinc deposits of the Neoproterozoic Bambuí Group and correlative sequences, São Francisco Craton, Brazil: a review and a possible metallogenic evolution model,” Ore Geology Reviews, vol. 26, pp. 263–304, 2005. View at Google Scholar