Table of Contents
Journal of Waste Management
Volume 2014 (2014), Article ID 412156, 8 pages
http://dx.doi.org/10.1155/2014/412156
Research Article

Valorization and Miscellaneous Prospects of Waste Musa balbisiana Colla Pseudostem

1Department of Molecular Biology & Biotechnology, School of Science, Tezpur University, Assam 784028, India
2Department of Chemical Sciences, School of Science, Tezpur University, Assam 784028, India
3Department of Energy, School of Engineering, Tezpur University, Assam 784028, India

Received 6 May 2014; Revised 21 July 2014; Accepted 26 July 2014; Published 17 August 2014

Academic Editor: Ramaraj Boopathy

Copyright © 2014 Krishna Gogoi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Demirbaş, “Biomass resource facilities and biomass conversion processing for fuels and chemicals,” Energy Conversion and Management, vol. 42, no. 11, pp. 1357–1378, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Sanderson, F. Agblevor, M. Collins, and D. K. Johnson, “Compositional analysis of biomass feedstocks by near infrared reflectance spectroscopy,” Biomass and Bioenergy, vol. 11, no. 5, pp. 365–370, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. R. C. Sun, “Cereal straw as a resource for sustainable biomaterials and biofuels-chemistry, extractives, lignins, hemicelluloses and cellulose,” Industrial Crops and Products, vol. 40, pp. 33–34, 2012. View at Google Scholar
  4. Y. Moriguchi, “Recycling and waste management from the viewpoint of material flow accounting,” Journal of Material Cycles and Waste Management, vol. 1, pp. 2–9, 1999. View at Google Scholar
  5. C. I. Koncsag, D. Eastwood, A. E. C. Collis et al., “Extracting valuable compounds from straw degraded by Pleurotus ostreatus,” Resources, Conservation and Recycling, vol. 59, pp. 14–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. P. Adinugraha, D. W. Marseno, and Haryadi, “Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT),” Carbohydrate Polymers, vol. 62, no. 2, pp. 164–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Meenakshi, S. E. Noorjahan, R. Rajini, U. Venkateswarlu, C. Rose, and T. P. Sastry, “Mechanical and microstructure studies on the modification of CA film by blending with PS,” Bulletin of Materials Science, vol. 25, no. 1, pp. 25–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Li, S. Fu, H. Zhan, Y. Zhan, and L. A. Lucia, “Analysis of the chemical composition and morphological structure of banana pseudostem,” BioResources, vol. 5, no. 2, pp. 576–585, 2010. View at Google Scholar · View at Scopus
  9. E. A. Davidson, T. D. D. A. Sá, C. J. R. Carvalho et al., “An integrated greenhouse gas assessment of an alternative to slash-and-burn agriculture in eastern Amazonia,” Global Change Biology, vol. 14, no. 5, pp. 998–1007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. FAOSTAT: ProdSTAT: Crops, Food and Agriculture Organization, 2005.
  11. D. Mohapatra, S. Mishra, and N. Sutar, “Banana and its by-product utilisation: an overview,” Journal of Scientific and Industrial Research, vol. 69, no. 5, pp. 323–329, 2010. View at Google Scholar · View at Scopus
  12. L. D'Souza, P. Devi, M. P. Divya Shridhar, and C. G. Naik, “Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium-induced changes in Padina tetrastromatica (Hauck),” Analytical Chemistry Insights, vol. 3, pp. 135–143, 2008. View at Google Scholar · View at Scopus
  13. A. Demirbaş, “Calculation of higher heating values of biomass fuels,” Fuel, vol. 76, no. 5, pp. 431–434, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Evald, J. Koppejan, W. Livingston, T. Nussbaumer, I. Obernberger, and Q. Skreiberg, “Biomass fuel properties and basic principles of biomass combustion,” in Handbook of Biomass Combustion and Co-Firing, pp. 7–53, Earthscan, London, UK, 2008. View at Google Scholar
  15. Annual Book of ASTM Standards, Part 26, American Society of Testing Materials, Easton, D 3173-73, D 3175-77, D-3174-73, 1977.
  16. P. J. van Soest, Nutritional Ecology of the Ruminant, Ruminant Metabolism, Nutritional Strategy, the Cellulolytic Fermentation and the Chemistry of Forages and Plant Fibres, Cornell University Press, London, UK, 1987.
  17. V. L. Singleton and J. A. Rossi, “Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents,” American Journal of Enology and Viticulture, vol. 16, no. 3, pp. 144–158, 1965. View at Google Scholar
  18. C. Chang, M. Yang, H. Wen, and J. Chern, “Estimation of total flavonoid content in propolis by two complementary colometric methods,” Journal of Food and Drug Analysis, vol. 10, no. 3, pp. 178–182, 2002. View at Google Scholar · View at Scopus
  19. A. Serpen, E. Capuano, V. Fogliano, and V. Gökmen, “A new procedure to measure the antioxidant activity of insoluble food components,” Journal of Agricultural and Food Chemistry, vol. 55, no. 19, pp. 7676–7681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. B. K. Deka, N. Dutta, and T. K. Maji, “Effect of different compatibilisers and nanoclays on the physical properties of wood (Phragmites karka)-polymer composites,” Polymers from Renewable Resources, vol. 2, no. 3, pp. 87–104, 2011. View at Google Scholar · View at Scopus
  22. P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresource Technology, vol. 83, no. 1, pp. 37–46, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Karunanithy, K. Muthukumarappan, and J. L. Julson, “Enzymatic hydrolysis of corn stover pretreated in high shear bioreactor,” in Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting, pp. 3603–3611, Providence, RI, USA, July 2008. View at Scopus
  24. M. Balat, “Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review,” Energy Conversion and Management, vol. 52, no. 2, pp. 858–875, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Bilba, M. A. Arsene, and A. Ouensanga, “Study of banana and coconut fibers: botanical composition, thermal degradation and textural observations,” Bioresource Technology, vol. 98, no. 1, pp. 58–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, West Sussex, UK, 1st edition, 2002.
  27. A. J. Romero-Anaya, A. Molina, P. Garcia, A. A. Ruiz-Colorado, A. Linares-Solano, and C. Salinas-Martínez de Lecea, “Phosphoric acid activation of recalcitrant biomass originated in ethanol production from banana plants,” Biomass and Bioenergy, vol. 35, no. 3, pp. 1196–1204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. W. F. Wolkers, A. E. Oliver, F. Tablin, and J. H. Crowe, “A Fourier-transform infrared spectroscopy study of sugar glasses,” Carbohydrate Research, vol. 339, no. 6, pp. 1077–1085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Yee, L. G. Benning, V. R. Phoenix, and F. G. Ferris, “Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation,” Environmental Science and Technology, vol. 38, no. 3, pp. 775–782, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Wolpert and P. Hellwig, “Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm−1,” Spectrochimica Acta, vol. 64, no. 4, pp. 987–1001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Aqil, I. Ahmad, and Z. Mehmood, “Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants,” Turkish Journal of Biology, vol. 30, no. 3, pp. 177–183, 2006. View at Google Scholar · View at Scopus
  32. G. Yen and H. Chen, “Antioxidant activity of various tea extracts in relation to their antimutagenicity,” Journal of Agricultural and Food Chemistry, vol. 43, no. 1, pp. 27–32, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Saravanan and S. M. Aradhya, “Polyphenols of pseudostem of different banana cultivars and their antioxidant activities,” Journal of Agricultural and Food Chemistry, vol. 59, no. 8, pp. 3613–3623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. K. P. S. Adinarayana and A. P. Babu, “Anti-oxidant activity and cytotoxicity of ethanolic extracts from rhizome of Musa acuminata,” Natural Science, vol. 3, no. 4, pp. 291–294, 2011. View at Google Scholar
  35. A. A. Yassin and M. W. Sabaa, “Degradation and stabilization of poly(vinyl chloride),” Journal of Macromolecular Science C: Polymer Reviews, vol. 30, no. 3-4, pp. 491–558, 1990. View at Google Scholar · View at Scopus
  36. T. Peprnicek, A. Kalendova, E. Pavlova, J. Simonik, J. Duchet, and J. F. Gerard, “Poly(vinyl chloride)-paste/clay nanocomposites: investigation of thermal and morphological characteristics,” Polymer Degradation and Stability, vol. 91, no. 12, pp. 3322–3329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, “Particulate reinforced metal matrix composites—a review,” Journal of Materials Science, vol. 26, no. 5, pp. 1137–1156, 1991. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Kiani, A. Ashori, and S. A. Mozaffari, “Water resistance and thermal stability of hybrid lignocellulosic filler-PVC composites,” Polymer Bulletin, vol. 66, no. 6, pp. 797–802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. J. John and S. Thomas, “Biofibres and biocomposites,” Carbohydrate Polymers, vol. 71, no. 3, pp. 343–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. V. K. Singh, P. C. Gope, C. Sakshi, and B. D. Singh, “Mechanical behavior of banana fiber based hybrid bio composites,” Journal of Materials and Environmental Science, vol. 3, no. 1, pp. 185–194, 2012. View at Google Scholar · View at Scopus
  41. M. A. Maleque, F. Y. Belal, and S. M. Sapuan, “Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite,” Arabian Journal for Science and Engineering B, vol. 32, no. 2, pp. 359–364, 2007. View at Google Scholar · View at Scopus
  42. S. Joseph, M. S. Sreekala, Z. Oommen, P. Koshy, and S. Thomas, “A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres,” Composites Science and Technology, vol. 62, no. 14, pp. 1857–1868, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. L. A. Pothan, Z. Oommen, and S. Thomas, “Dynamic mechanical analysis of banana fiber reinforced polyester composites,” Composites Science and Technology, vol. 63, no. 2, pp. 283–293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. E. S. Zainudin, S. M. Sapuan, K. Abdan, and M. T. M. Mohamad, “Thermal degradation of banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites,” Materials and Design, vol. 30, no. 3, pp. 557–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. N. Indira, P. Jyotishkumar, and S. Thomas, “Thermal stability and degradation of banana fibre/PF composites fabricated by RTM,” Fibers and Polymers, vol. 13, no. 10, pp. 1319–1325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Z. Meng and S. C. Tjong, “Preparation and properties of injection-moulded blends of poly(vinyl chloride) and liquid crystal copolyester,” Polymer, vol. 40, no. 10, pp. 2711–2718, 1999. View at Publisher · View at Google Scholar · View at Scopus