Abstract

The paper examines the potential of vacuum ultraviolet (VUV) photoionization mass spectroscopy in probing the fragmentation of organometallics in molecular-beam studies and laser-assisted deposition processes. To this end, the ionic fragmentation pattern of few common organometallics, namely metallocenes and carbonyls, is examined at selected VUV wavelengths, produced by microwave-discharge resonance atomic lamps. Discussion of the recorded spectra in terms of the electronic structure of the compounds indicates lack of dynamical bias in the VUV photoionization/fragmentation of metal complexes. Excitation with VUV light results in simpler ionic fragmentation patterns than what observed with electron-impact ionization, thereby enabling accurate monitoring of the excimer-laser photodissociation of organometallics. Finally, the intensity of the VUV ionic signal appears to be adequate for molecular-beam studies. An illustrative example is provided for the study of the 248nm-induced photodesorption of Mo(CO)6 from cryogenic films.