Laser Chemistry

Laser Chemistry / 1996 / Article

Open Access

Volume 16 |Article ID 075736 |

K. Sentrayan, E. Haque, A. Michael, V. S. Kushawaha, "Photolysis of SiH4 by the Third Harmonic of a Nd:YAG Laser at 355 NM", Laser Chemistry, vol. 16, Article ID 075736, 9 pages, 1996.

Photolysis of SiH4 by the Third Harmonic of a Nd:YAG Laser at 355 NM

Received15 Oct 1995


The photolysis of silane (SiH4) was carried out using the third harmonic of a Nd: YAG laser at 355 nm, at a fixed SiH4 pressure of 350 Torr, varying the laser energy fluence in the range of 30–300 Jcm-2. The emission spectra indicates that the photofragments formed are SiH2, SiH, Si, H2, and H. The (A1B1-X1A1) transitions at 552.7 nm, 525.3 nm, 505.6 nm, and 484.7 nm of SiH2 are due to a two photon absorption process. The (A2Δ-X2π) transitions of SiH at 425.9 nm, 418 nm, 414.2 nm, 412.8 nm and 395.6 nm are due to a three photon absorption process. The brownish white deposit on the cell windows indicates the presence of amorphous silicon (a:Si-H). The two atomic lines of Si(4s1P0 3p21D2) at 288.1 nm, and (4s3Pj 3P3Pj) at 251.6 nm are observed. The atomic Si transitions are due to a three photon absorption. We observed seven transitions due to molecular hydrogen at wavelengths 577.5 nm, 565.5 nm, 534.4 nm, 542.5 nm, 471 nm, 461.7 nm, and 455.4 nm. These bands are due to a four photon absorption proc6ss. In addition to the molecular bands we also observed hydrogen atomic lines Hβ, Hγ and Hδ.

Copyright © 1996 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.