Table of Contents
Laser Chemistry
Volume 2008, Article ID 239417, 19 pages
http://dx.doi.org/10.1155/2008/239417
Review Article

Gratings in Structured Optical Fibres

1Interdisciplinary Photonics Laboratories, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
2Mechanical Engineering Department, Pontifical Catholic University of Rio de Janeiro-PUC-Rio, Rio de Janeiro 22453-900, Brazil
3Federal University of Technology-Paraná, Curitiba 80230-901, Brazil
4School of Mathematical and Physical Sciences, Faculty of Science and Information Technology, Newcastle University, Newcastle, NSW 2308, Australia
5Central Glass and Ceramic Research Institute, Kolkata-700032, India

Received 10 June 2008; Accepted 18 August 2008

Academic Editor: Stavros Pissadakis

Copyright © 2008 John Canning et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell System Technical Journal, vol. 53, no. 6, pp. 1021–1039, 1974. View at Google Scholar
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic Publishers, Boston, Mass, USA, 2003.
  3. J. Canning, “Fresnel optics inside optical fibres,” in Photonics Research Developments, Nova Science, Huntington, NY, USA, 2008. View at Google Scholar
  4. H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Optics Communications, vol. 270, no. 2, pp. 207–210, 2007. View at Publisher · View at Google Scholar
  5. J. Canning, S. K. Lim, T. K. Yip, and C. Martelli, “New device functionality within structured optical fibres by selective filling,” in Proceedings of the Joint Conference on Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (ACOFT/OECC '08), Sydney, Australia, July 2008.
  6. C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, and M. J. Crossley, “Evanescent field spectroscopy using structured optical fibres: detection of charge-transfer at the porphyrin-silica interface,” submitted to Journal of the American Chemical Society.
  7. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Optics Letters, vol. 24, no. 21, pp. 1460–1462, 1999. View at Publisher · View at Google Scholar
  8. H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Optics Communications, vol. 270, no. 2, pp. 207–210, 2007. View at Publisher · View at Google Scholar
  9. V. Beugin, L. Bigot, P. Niay et al., “Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber,” Applied Optics, vol. 45, no. 32, pp. 8186–8193, 2006. View at Publisher · View at Google Scholar
  10. L. B. Fu, G. D. Marshall, J. A. Bolger et al., “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electronics Letters, vol. 41, no. 11, pp. 638–640, 2005. View at Publisher · View at Google Scholar
  11. M. C. Phan Huy, G. Laffont, Y. Frignac et al., “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Measurement Science and Technology, vol. 17, no. 5, pp. 992–997, 2006. View at Publisher · View at Google Scholar
  12. G. Violakis and S. Pissadakis, “Improved efficiency Bragg grating inscription in a commercial solid core microstructured optical fiber,” in Proceedings of the 9th International Conference on Transparent Optical Networks (ICTON '07), vol. 2, pp. 217–220, Rome , Italy, July 2007. View at Publisher · View at Google Scholar
  13. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Optics Letters, vol. 27, no. 10, pp. 809–811, 2002. View at Publisher · View at Google Scholar
  14. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers,” Optics Letters, vol. 28, no. 4, pp. 233–235, 2003. View at Publisher · View at Google Scholar
  15. N. Groothoff, C. Martelli, J. Canning, and K. Lyytikainen, “Fibre Bragg grating in Fresnel fibre with temperature and strain characterisation,” in Proceedings of the 30th Australian Conference on Optical Fibre Technology (ACOFT '05), Sydney, Australia, July 2005.
  16. J. Canning, N. Groothoff, E. Buckley, T. Ryan, K. Lyytikainen, and J. Digweed, “All-fibre photonic crystal distributed Bragg reflector (PC-DBR) fibre laser,” Optics Express, vol. 11, no. 17, pp. 1995–2000, 2003. View at Google Scholar
  17. N. Groothoff, J. Canning, T. Ryan, K. Lyytikainen, and H. Inglis, “Distributed feedback photonic crystal fibre (DFB-PCF) laser,” Optics Express, vol. 13, no. 8, pp. 2924–2930, 2005. View at Publisher · View at Google Scholar
  18. N. Groothoff, C. Martelli, and J. Canning, “A dual wavelength distributed-feedback fiber laser,” Journal of Applied Physics, vol. 103, no. 1, Article ID 013101, 6 pages, 2008. View at Publisher · View at Google Scholar
  19. J. Canning, S. D. Jackson, M. L. Åslund, N. Groothoff, B. Ashton, and K. Lyytikainen, “Air-clad fibre laser with internal Bragg grating,” Electronics Letters, vol. 41, no. 20, pp. 1103–1104, 2005. View at Publisher · View at Google Scholar
  20. N. Groothoff, J. Canning, N. Jovanovic, G. D. Marshall, and M. J. Whitford, “Gratings in large diameter air-clad optical fibre using a femtosecond laser,” in Proceedings of the OSA Topical Meeting: Bragg Gratings, Photosensitivity and Poling (BGPP '07), Quebec City, Canada, September 2007.
  21. S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technology Letters, vol. 18, no. 17, pp. 1837–1839, 2006. View at Publisher · View at Google Scholar
  22. J. Canning, “Fibre gratings and devices,” in Lasers and Photonics Reviews, John Wiley & Sons, New York, NY, USA, 2008. View at Google Scholar
  23. C. Martelli, J. Canning, B. Gibson, and S. Huntington, “Cryptography based on coherent scattering of light,” in Proceedings of the Joint International Conference on Optical Internet and the 32nd Australian Conference on Optical Fibre Technology (COIN-ACOFT '07), pp. 1–3, Melbourne, Australia, June 2007. View at Publisher · View at Google Scholar
  24. R. C. Gauthier, “Photonic quasi-crystals: a review,” in Proceedings of the Progress in Electromagnetics Research Symposium (PIERS '08), p. 151, Hangzhou, China, March 2008.
  25. C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction,” Sensors, vol. 7, no. 11, pp. 2492–2498, 2007. View at Google Scholar
  26. J. De Iuliis, “Modelling the angular dependence on Bragg grating writing in photonic crystal fibre,” Student Practical Optical Design Report, University of Newcastle, 2006.
  27. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Optics Express, vol. 15, no. 12, pp. 7876–7887, 2007. View at Publisher · View at Google Scholar
  28. J. Canning, “Gratings and grating devices in structured fibres using 193 nm from an ArF laser,” in Proceedings of the OSA Topical Meeting: Bragg Gratings, Photosensitivity and Poling (BGPP '07), Quebec City, Canada, September 2007.
  29. J. L. Holdsworth, J. Canning, and C. Dewhurst, “Rotational dependence of laser light accessing photonic crystal fibre cores from the side,” in Proceedings of the 19th International Conference on Optical Fibre Sensors, D. Sampson, S. Collins, K. Oh, and R. Yamauchi, Eds., vol. 7004 of Proceedings of SPIE, pp. 1–4, Perth, Australia, April 2008. View at Publisher · View at Google Scholar
  30. J. Holdsworth, S. Bandyopadhyay, J. Canning, M. Stevenson, and J. de Iuliis, “Transversely illuminating the core of photonic crystal fibres,” in Proceedings of the Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (OECC/ACOFT '08), Sydney, Australia, July 2008. View at Publisher · View at Google Scholar
  31. J. Holdsworth, K. Cook, J. Canning, S. Bandyopadhyay, and M. Stevenson, “Rotationally variant grating writing in photonic crystal fibres,” submitted to Optics Express.
  32. A. P. Mosk, “Focussing of light by disordered metamaterials,” in Proceedings of the Progress in Electromagnetics Research Symposium (PIERS '08), p. 741, Hangzhou, China, March 2008.
  33. K. Cook, A. Pohl, and J. Canning, “Positive and negative index gratings in 10-ring photonic crystal fibres with germanosilicate cores using 193 nm,” in Proceedings of the Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (OECC/ACOFT '08), Sydney, Australia, July 2008. View at Publisher · View at Google Scholar
  34. K. Cook, A. Pohl, and J. Canning, “Type IIA gratings in hydrogen-free 10-ring photonic crystal fibre with germanosilicate core,” submitted to Optics Letters.
  35. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Optics Letters, vol. 29, no. 20, pp. 2360–2362, 2004. View at Publisher · View at Google Scholar
  36. J. Canning, K. Sommer, M. Englund, and S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibers,” Advanced Materials, vol. 13, no. 12-13, pp. 970–973, 2001. View at Publisher · View at Google Scholar
  37. H. Sorensen, J. B. Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibers,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, Trends in Optics and Photonics Series, Optical Society of America, Washington, DC, USA, 2005. View at Google Scholar
  38. D. Káčik, I. Turek, I. Martinček, J. Canning, N. A. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Optics Express, vol. 12, no. 15, pp. 3465–3470, 2004. View at Publisher · View at Google Scholar
  39. A. Pohl, K. Cook, and J. Canning, “Bragg grating writing in H2-loaded many-layered PCF without liquid filling of the holes,” in Proceedings of the Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (OECC/ACOFT '08), Sydney, Australia, July 2008.
  40. M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electronics Letters, vol. 31, no. 12, pp. 1007–1009, 1995. View at Publisher · View at Google Scholar
  41. A. Canagasabey, J. Canning, J. Mills, D. P. Banks, and M. Ibsen, “Fibre Bragg grating fabrication in germanosilicate fibres with 244 nm femtosecond laser light,” in Proceedings of the 2nd Pacific International Conference on Applications of Lasers and Optics (PICALO '06), Melbourne, Australia, April 2006.
  42. A. Wootton, B. Thomas, and P. Harrowell, “Radiation-induced densification in amorphous silica: a computer simulation study,” Journal of Chemical Physics, vol. 115, no. 7, pp. 3336–3341, 2001. View at Publisher · View at Google Scholar
  43. C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Impact of water and ice 1h formation in a photonic crystal fiber grating,” Optics Letters, vol. 31, no. 6, pp. 706–708, 2006. View at Publisher · View at Google Scholar
  44. W. Primak, L. H. Fuchs, and P. Day, “Radiation damage in insulators,” Physical Review, vol. 92, no. 4, pp. 1064–1065, 1953. View at Publisher · View at Google Scholar
  45. W. Primak and H. Szymanski, “Radiation damage in vitreous silica: annealing of the density changes,” Physical Review, vol. 101, no. 4, pp. 1268–1271, 1956. View at Publisher · View at Google Scholar
  46. W. Primak and R. Kampwirth, “The radiation compaction of vitreous silica,” Journal of Applied Physics, vol. 39, no. 12, pp. 5651–5658, 1968. View at Publisher · View at Google Scholar
  47. C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Physical Review B, vol. 33, no. 4, pp. 2972–2974, 1986. View at Publisher · View at Google Scholar
  48. M. Lancry and B. Poumellec, “Multiphoton absorption processes & UV laser processing of silica-based materials,” in Proceedings of the 1st International Workshop on Multiphoton Processes in Glass and Glassy Materials, J. Canning, Ed., Sydney, Australia, December 2006.
  49. N. Groothoff, M. Lancry, B. Poumellec, and J. Canning, “193 nm photolytic mechanism in Er/Al doped silica,” in Proceedings of the Joint Conference on Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (ACOFT/OECC '08), Sydney, Australia, July 2008. View at Publisher · View at Google Scholar
  50. M. Lancry, N. Groothoff, B. Poumellec, and J. Canning, “Two-photon grating writing in Er/Al doped preform plates using 193 nm laser light,” In preparation.
  51. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Optics Letters, vol. 28, no. 22, pp. 2171–2173, 2003. View at Google Scholar
  52. S. J. Mihailov, C. W. Smelser, P. Lu et al., “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Optics Letters, vol. 28, no. 12, pp. 995–997, 2003. View at Publisher · View at Google Scholar
  53. K. A. Zagorulko, P. G. Kryukov, Yu. V. Larionov et al., “Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation,” Optics Express, vol. 12, no. 24, pp. 5996–6001, 2004. View at Publisher · View at Google Scholar
  54. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electronics Letters, vol. 40, no. 19, pp. 1170–1172, 2004. View at Publisher · View at Google Scholar
  55. C. W. Smelser, S. J. Mihailov, D. Grobnic et al., “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Optics Letters, vol. 29, no. 13, pp. 1458–1460, 2004. View at Publisher · View at Google Scholar
  56. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Optics Letters, vol. 29, no. 18, pp. 2127–2129, 2004. View at Publisher · View at Google Scholar
  57. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Optics Express, vol. 13, no. 14, pp. 5377–5386, 2005. View at Publisher · View at Google Scholar
  58. in Proceedings of the 1st International Workshop on Multiphoton Processes in Glass and Glassy Materials, J. Canning, Ed., Sydney, Australia, December 2006.
  59. C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Optics Letters, vol. 17, no. 11, pp. 833–835, 1992. View at Google Scholar
  60. M. L. Åslund, N. Jovanovic, N. Groothoff et al., “Large diffractive scattering losses in the visible region produced by femtosecond laser written Bragg gratings,” in Proceedings of the Australian Conference on Optical Fibre Technology & Opto-Electronics and Communications Conference (ACOFT/OECC '08), Sydney, Australia, July 2008. View at Publisher · View at Google Scholar
  61. M. L. Åslund, N. Jovanovic, N. Groothoff et al., “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Optics Express, vol. 16, no. 18, pp. 14248–14254, 2008. View at Publisher · View at Google Scholar
  62. N. Jovanovic, M. L. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Optics Letters, vol. 32, no. 19, pp. 2804–2806, 2007. View at Publisher · View at Google Scholar
  63. M. L. Åslund, S. D. Jackson, J. Canning, N. Groothoff, B. Ashton, and K. Lyytikainen, “High power Yb3+ doped air-clad fibre laser using a Bragg grating written into the active medium,” in Proceedings of the 7th Australian Conference on Optics, Lasers and Spectroscopy (ACOLS '05), Roturua, New Zealand, December 2005, paper WeA2.
  64. M. L. Åslund, private communication, unpublished work, 2007.
  65. J. Arkwright, G. Atkins, Z. Brodzeli et al., “All optical switching in rare-earth doped fibers,” in Proceedings of the Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '97), p. 265, Chiba, Japan, July 1997, paper FH1.
  66. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Applied Physics Letters, vol. 71, no. 7, pp. 882–884, 1997. View at Publisher · View at Google Scholar
  67. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Applied Physics A, vol. 81, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar
  68. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Applied Physics A, vol. 76, no. 3, pp. 367–372, 2003. View at Publisher · View at Google Scholar
  69. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, “Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication,” Journal of the Optical Society of America B, vol. 22, no. 2, pp. 354–361, 2005. View at Publisher · View at Google Scholar
  70. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Optics Express, vol. 13, no. 6, pp. 1999–2006, 2005. View at Publisher · View at Google Scholar
  71. K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti et al., “Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment,” Microwave and Optical Technology Letters, vol. 49, no. 4, pp. 872–874, 2007. View at Publisher · View at Google Scholar
  72. M. L. Åslund, J. Canning, S. D. Jackson, A. Teixeira, and K. Lyytikäinen, “Diffraction in air-clad fibres,” Optics Express, vol. 13, no. 14, pp. 5227–5233, 2005. View at Publisher · View at Google Scholar
  73. M. L. Åslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikäinen-Digweed, “The influence of skew rays on angular losses in air-clad fibres,” Optics Communications, vol. 262, no. 1, pp. 77–81, 2006. View at Publisher · View at Google Scholar
  74. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Optics Letters, vol. 30, no. 14, pp. 1785–1787, 2005. View at Publisher · View at Google Scholar
  75. D. Káčik, I. Turek, I. Martinček, J. Canning, N. A. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Optics Express, vol. 12, no. 15, pp. 3465–3470, 2004. View at Publisher · View at Google Scholar
  76. C. Martelli, J. Canning, N. Groothoff, and K. Lyttikainen, “Bragg gratings in photonic crystal fibers: strain and temperature chacterization,” in 17th International Conference on Optical Fibre Sensors, M. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, Eds., vol. 5855 of Proceedings of SPIE, pp. 302–305, Bruges, Belgium, May 2005. View at Publisher · View at Google Scholar
  77. M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electronics Letters, vol. 31, no. 12, pp. 1007–1009, 1995. View at Publisher · View at Google Scholar
  78. H. R. Sørensen, J. Canning, J. Lægsgaard, and K. Hansen, “Control of the wavelength dependent thermo-optic coefficients in structured fibres,” Optics Express, vol. 14, no. 14, pp. 6428–6433, 2006. View at Publisher · View at Google Scholar
  79. O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-shvaikovskaya, Eds., Handbook of Glass Data. Part A. Silica Glass and Binary Silicate Glasses, O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-shvaikovskaya, Eds., Elsevier, Amsterdam, The Netherlands, 1983.
  80. A. Michie, J. Canning, K. Lyytikäinen, M. L. Åslund, and J. Digweed, “Temperature independent highly birefringent photonic crystal fibre,” Optics Express, vol. 12, no. 21, pp. 5160–5165, 2004. View at Publisher · View at Google Scholar
  81. A. Michie, J. Canning, I. Bassett et al., “Spun elliptically birefringent photonic crystal fibre,” Optics Express, vol. 15, no. 4, pp. 1811–1816, 2007. View at Publisher · View at Google Scholar
  82. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Optics Express, vol. 10, no. 23, pp. 1314–1319, 2002. View at Google Scholar
  83. K. Lyytikäinen, Control of complex structural geometry in optical fibre drawing, Ph.D. thesis, School of Physics and Interdisciplinary Photonics Laboratories, The University of Sydney, Sydney, Australia, 2004.
  84. J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Optics Communications, vol. 207, no. 1–6, pp. 35–39, 2002. View at Publisher · View at Google Scholar
  85. D. Káčik, I. Turek, I. Martinček, J. Canning, and K. Lyytikainen, “The role of diffraction in influencing the short wavelength loss edge of photonic crystal fibres,” in Proceedings of the 30th Australian Conference on Optical Fibre Technology (ACOFT '05), Sydney, Australia, July 2005.
  86. C. Martelli, J. Canning, B. Gibson, and S. Huntington, “Bend loss in structured optical fibres,” Optics Express, vol. 15, no. 26, pp. 17639–17644, 2007. View at Publisher · View at Google Scholar
  87. C. M. Rollinson, S. M. Orbons, S. T. Huntington et al., “Near field characterisation of a nano-structured metamaterial with a metal-free optical fiber probe,” submitted to Nano Letters.
  88. V. F. Petrenko and R. W. Whitworth, Physics of Ice, Oxford University Press, New York, NY, USA, 2002.
  89. A. A. P. Pohl, R. A. Oliveira, K. Cook, and J. Canning, “Modulation of a photonic crystal fibre Bragg grating induced by acoustical waves,” submitted to Optics Express.
  90. A. A. P. Pohl, P. T. Neves, Jr., R. A. Oliveira, M. Stevenson, N. Groothoff, and J. Canning, “Technique for estimating the tuning speed of fiber Bragg gratings,” in 19th International Conference on Optical Fibre Sensors, vol. 7004 of Proceedings of SPIE, Perth, Australia, April 2008. View at Publisher · View at Google Scholar
  91. R. A. Oliveira, P. de T. Neves, Jr., J. M. Maia, A. de A. P. Pohl, and J. Canning, “Modulação da Refletividade de Redes de Bragg usando Interação Acusto-Óptica de Baixa Freqüência,” in Proceedings of the 13 SBMO Brazilian Symposium on Microwave and Optoelectronics and 8th CBMag Brazilian Congress of Eletromagnetismo (MOMAG '08), pp. 396–398, Florianpolis, Brazil, September 2008.