Table of Contents
Leukemia Research and Treatment
Volume 2011, Article ID 329572, 7 pages
http://dx.doi.org/10.4061/2011/329572
Review Article

Understanding and Targeting the Wnt/β-Catenin Signaling Pathway in Chronic Leukemia

Department of Internal Medicine III (Hematology and Oncology), Center for Integrated Oncology (CIO), University of Bonn, Sigmund-Freud Straβe 25, 53127 Bonn, Germany

Received 30 August 2011; Accepted 14 October 2011

Academic Editor: Spiro Konstantinov

Copyright © 2011 S. Thanendrarajan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Hu, Y. Chen, L. Douglas, and S. Li, “β-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia,” Leukemia, vol. 23, no. 1, pp. 109–116, 2009. View at Publisher · View at Google Scholar · View at PubMed
  2. M. Hallek and N. Pflug, “State of the art treatment of chronic lymphocytic leukaemia,” Blood Reviews, vol. 25, no. 1, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at PubMed
  3. B. T. MacDonald, K. Tamai, and X. He, “Wnt/β-catenin signaling: components, mechanisms, and diseases,” Developmental Cell, vol. 17, no. 1, pp. 9–26, 2009. View at Publisher · View at Google Scholar · View at PubMed
  4. M. Wilusz and M. Majka, “Role of the Wnt/β-catenin network in regulating hematopoiesis,” Archivum Immunologiae et Therapiae Experimentalis, vol. 56, no. 4, pp. 257–266, 2008. View at Publisher · View at Google Scholar · View at PubMed
  5. A. Filipovich, I. Gehrke, S. J. Poll-Wolbeck, and K. A. Kreuzer, “Physiological inhibitors of Wnt signaling,” European Journal of Haematology, vol. 86, no. 6, pp. 453–465, 2011. View at Publisher · View at Google Scholar · View at PubMed
  6. W. J. Nelson and R. Nusse, “Convergence of Wnt, β-catenin, and cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004. View at Publisher · View at Google Scholar · View at PubMed
  7. X. Gao, J. Wen, L. Zhang et al., “Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus,” Journal of Biological Chemistry, vol. 283, no. 51, pp. 35679–35688, 2008. View at Publisher · View at Google Scholar · View at PubMed
  8. A. Novak and S. Dedhar, “Signaling through β-catenin and Lef/Tcf,” Cellular and Molecular Life Sciences, vol. 56, no. 5-6, pp. 523–537, 1999. View at Publisher · View at Google Scholar
  9. T. Akiyama, “Wnt/β-catenin signaling,” Cytokine and Growth Factor Reviews, vol. 11, no. 4, pp. 273–282, 2000. View at Google Scholar
  10. C. Sakanaka, T. Q. Sun, L. T. Williams et al., “New steps in the Wnt/β-catenin signal transduction pathway,” Recent Progress in Hormone Research, vol. 55, pp. 225–236, 2000. View at Google Scholar
  11. E. Porfiri, B. Rubinfeld, I. Albert, K. Hovanes, M. Waterman, and P. Polakis, “Induction of a β-catenin-LEF-1 complex by wnt-1 and transforming mutants of β-catenin,” Oncogene, vol. 15, no. 23, pp. 2833–2839, 1997. View at Google Scholar
  12. M. Asally and Y. Yoneda, “β-catenin can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1),” Experimental Cell Research, vol. 308, no. 2, pp. 357–363, 2005. View at Publisher · View at Google Scholar · View at PubMed
  13. E. M. Sampson, Z. K. Haque, M. C. Ku et al., “Negative regulation of the Wnt-β-catenin pathway by the transcriptional repressor HBP1,” EMBO Journal, vol. 20, no. 16, pp. 4500–4511, 2001. View at Publisher · View at Google Scholar · View at PubMed
  14. S. Wang and K. A. Jones, “CK2 controls the recruitment of Wnt regulators to target genes in vivo,” Current Biology, vol. 16, no. 22, pp. 2239–2244, 2006. View at Publisher · View at Google Scholar · View at PubMed
  15. T. Kramps, O. Peter, E. Brunner et al., “Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin-TCF complex,” Cell, vol. 109, no. 1, pp. 47–60, 2002. View at Publisher · View at Google Scholar
  16. R. Hoffmans, R. Städeli, and K. Basler, “Pygopus and legless provide essential transcriptional coactivator functions to armadillo/β-catenin,” Current Biology, vol. 15, no. 13, pp. 1207–1211, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. E. H. Jho, T. Zhang, C. Domon, C. K. Joo, J. N. Freund, and F. Costantini, “Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway,” Molecular and Cellular Biology, vol. 22, no. 4, pp. 1172–1183, 2002. View at Publisher · View at Google Scholar
  18. S. Mokhtarzada, C. Yu, A. Brickenden, and W. Y. Choy, “Structural characterization of partially disordered human Chibby: insights into its function in the Wnt-signaling pathway,” Biochemistry, vol. 50, no. 5, pp. 715–726, 2011. View at Publisher · View at Google Scholar · View at PubMed
  19. K. I. Tago, T. Nakamura, M. Nishita et al., “Inhibition of Wnt signaling by ICAT, a novel β-catenin-interacting protein,” Genes and Development, vol. 14, no. 14, pp. 1741–1749, 2000. View at Google Scholar
  20. J. R. Prosperi and K. H. Goss, “A Wnt-ow of opportunity: targeting the Wnt/β-catenin pathway in breast cancer,” Current Drug Targets, vol. 11, no. 9, pp. 1074–1088, 2010. View at Publisher · View at Google Scholar
  21. W. Lu, H. N. Tinsley, A. Keeton, Z. Qu, G. A. Piazza, and Y. Li, “Suppression of Wnt/β-catenin signaling inhibits prostate cancer cell proliferation,” European Journal of Pharmacology, vol. 602, no. 1, pp. 8–14, 2009. View at Publisher · View at Google Scholar · View at PubMed
  22. W. Chen, M. Chen, and L. S. Barak, “Development of small molecules targeting the Wnt pathway for the treatment of colon cancer: a high-throughput screening approach,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 299, no. 2, pp. G293–G300, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. X. Ge and X. Wang, “Role of Wnt canonical pathway in hematological malignancies,” Journal of Hematology and Oncology, vol. 3, article 33, 2010. View at Publisher · View at Google Scholar · View at PubMed
  24. Y. X. Wang, J. H. Zhang, and Z. W. Gu, “Wnt/β-catenin signal pathway and malignant hematological disease —review,” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 17, no. 1, pp. 234–237, 2009. View at Google Scholar
  25. I. Gehrke, R. K. Gandhirajan, and K. A. Kreuzer, “Targeting the WNT/β-catenin/TCF/LEF1 axis in solid and haematological cancers: multiplicity of therapeutic options,” European Journal of Cancer, vol. 45, no. 16, pp. 2759–2767, 2009. View at Publisher · View at Google Scholar · View at PubMed
  26. M. Aoki, A. Hecht, U. Kruse, R. Kemler, and P. K. Vogt, “Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 1, pp. 139–144, 1999. View at Publisher · View at Google Scholar
  27. C. Zhao, J. Blum, A. Chen et al., “Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo,” Cancer Cell, vol. 12, no. 6, pp. 528–541, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. F. J. Giles, D. J. DeAngelo, M. Baccarani et al., “Optimizing outcomes for patients with advanced disease in chronic myelogenous leukemia,” Seminars in Oncology, vol. 35, supplement 1, pp. S1–S17, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. J. P. Radich, H. Dai, M. Mao et al., “Gene expression changes associated with progression and response in chronic myeloid leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2794–2799, 2006. View at Publisher · View at Google Scholar · View at PubMed
  30. D. Lu, J. X. Liu, T. Endo et al., “Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/β-catenin pathway,” PloS one, vol. 4, no. 12, p. e8294, 2009. View at Google Scholar · View at Scopus
  31. A. Filipovich, R. K. Gandhirajan, I. Gehrke, S. J. Poll-Wolbeck, and K. A. Kreuzer, “Evidence for non-functional Dickkopf-1 (DKK-1) signaling in chronic lymphocytic leukemia (CLL),” European Journal of Haematology, vol. 85, no. 4, pp. 309–313, 2010. View at Publisher · View at Google Scholar · View at PubMed
  32. R. K. Gandhirajan, S. J. Poll-Wolbeck, I. Gehrke, and K. A. Kreuzer, “Wnt/β-catenin/LEF-1 signaling in chronic lymphocytic leukemia (CLL): a target for current and potential therapeutic options,” Current Cancer Drug Targets, vol. 10, no. 7, pp. 716–727, 2010. View at Google Scholar
  33. A. Gutierrez Jr, R. C. Tschumper, X. Wu et al., “LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis,” Blood, vol. 116, no. 16, pp. 2975–2983, 2010. View at Publisher · View at Google Scholar · View at PubMed
  34. L. B. Bennett, K. H. Taylor, G. L. Arthur, F. B. Rahmatpanah, S. I. Hooshmand, and C. W. Caldwell, “Epigenetic regulation of WNT signaling in chronic lymphocytic leukemia,” Epigenomics, vol. 2, no. 1, pp. 53–70, 2010. View at Publisher · View at Google Scholar · View at PubMed
  35. D. Lu, Y. Zhao, R. Tawatao et al., “Activation of the Wnt signaling pathway in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3118–3123, 2004. View at Publisher · View at Google Scholar · View at PubMed
  36. H. Yao, E. Ashihara, and T. Maekawa, “Targeting the Wnt/β-catenin signaling pathway in human cancers,” Expert Opinion on Therapeutic Targets, vol. 15, no. 7, pp. 873–887, 2011. View at Publisher · View at Google Scholar · View at PubMed
  37. J. C. Curtin and M. V. Lorenzi, “Drug discovery approaches to target Wnt signaling in cancer stem cells,” Oncotarget, vol. 1, no. 7, pp. 563–577, 2010. View at Google Scholar
  38. A. J. Chien and R. T. Moon, “WNTS and WNT receptors as therapeutic tools and targets in human disease processes,” Frontiers in Bioscience, vol. 12, no. 2, pp. 448–457, 2007. View at Publisher · View at Google Scholar
  39. K. S. Minke, P. Staib, A. Puetter et al., “Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells,” European Journal of Haematology, vol. 82, no. 3, pp. 165–175, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. Y. Kim, G. Reifenberger, D. Lu et al., “Influencing the Wnt signaling pathway in multiple myeloma,” Anticancer Research, vol. 31, no. 2, pp. 725–730, 2011. View at Google Scholar
  41. K. Wang, Q. Ma, Y. Ren et al., “Geldanamycin destabilizes HER2 tyrosine kinase and suppresses Wnt/β-catenin signaling in HER2 overexpressing human breast cancer cells,” Oncology Reports, vol. 17, no. 1, pp. 89–96, 2007. View at Google Scholar
  42. G. Jin, D. Lu, S. Yao et al., “Amide derivatives of ethacrynic acid: synthesis and evaluation as antagonists of Wnt/β-catenin signaling and CLL cell survival,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 3, pp. 606–609, 2009. View at Publisher · View at Google Scholar · View at PubMed
  43. D. Lu, M. Y. Choi, J. Yu, J. E. Castro, T. J. Kipps, and D. A. Carson, “Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 32, pp. 13253–13257, 2011. View at Publisher · View at Google Scholar · View at PubMed
  44. R. Razavi, I. Gehrke, R. K. Gandhirajan, S. J. Poll-Wolbeck, M. Hallek, and K. A. Kreuzer, “Nitric oxide-donating acetylsalicylic acid induces apoptosis in chronic lymphocytic leukemia cells and shows strong antitumor efficacy in vivo,” Clinical Cancer Research, vol. 17, no. 2, pp. 286–293, 2011. View at Publisher · View at Google Scholar · View at PubMed
  45. R. K. Gandhirajan, P. A. Staib, K. Minke et al., “Small molecule inhibitors of Wnt/β-Catenin/Lef-1 Signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo,” Neoplasia, vol. 12, no. 4, pp. 326–335, 2010. View at Publisher · View at Google Scholar