Table of Contents
Leukemia Research and Treatment
Volume 2013, Article ID 756703, 5 pages
http://dx.doi.org/10.1155/2013/756703
Research Article

New Quantitative Method to Identify NPM1 Mutations in Acute Myeloid Leukaemia

1Laboratoire d’Hématologie, Centre Hospitalier Lyon Sud, 165 chemin du Grand Revoyet, 69 495 Pierre-Bénite, France
2UMR 5239 CNRS, Faculté de Médecine Lyon Sud, 165 chemin du Petit Revoyet-BP 12, 69921 Oullins Cedex, France
3Service d’Hématologie 1G, Centre Hospitalier Lyon Sud, 165 chemin du Grand Revoyet, 69 495 Pierre-Bénite, France

Received 21 January 2013; Accepted 18 March 2013

Academic Editor: Massimo Breccia

Copyright © 2013 Sarah Huet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Falini, C. Mecucci, E. Tiacci et al., “Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype,” New England Journal of Medicine, vol. 352, no. 3, pp. 254–266, 2005. View at Publisher · View at Google Scholar
  2. D. A. Arber, R. D. Brunning, M. M. Le Beau et al., “Acute myeloid leukemia with recurrent genetic abnormalities,” in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, S. H. Swerdlow, E. Campo, N. L. Harris et al., Eds., pp. 110–123, International Agency for Research on Cancer (IARC), 4th edition, 2008. View at Google Scholar
  3. B. Falini, M. P. Martelli, N. Bolli et al., “Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity?” Blood, vol. 117, no. 4, pp. 1109–1120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Vassiliou, J. L. Cooper, R. Rad et al., “Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice,” Nature Genetics, vol. 43, no. 5, pp. 470–476, 2011. View at Publisher · View at Google Scholar
  5. S. Schnittger, W. Kern, C. Tschulik et al., “Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML,” Blood, vol. 114, no. 11, pp. 2220–2231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Kristensen, M. B. Møller, L. Friis, O. J. Bergmann, and B. Preiss, “NPM1 mutation is a stable marker for minimal residual disease monitoring in acute myeloid leukaemia patients with increased sensitivity compared to WT1 expression,” European Journal of Haematology, vol. 87, no. 5, pp. 400–408, 2011. View at Publisher · View at Google Scholar
  7. B. Falini, I. Gionfriddo, F. Cecchetti, S. Ballanti, V. Pettirossi, and M. P. Martelli, “Acute myeloid leukemia with mutated nucleophosmin (NPM1): any hope for a targeted therapy?” Blood Reviews, vol. 25, no. 6, pp. 247–254, 2011. View at Publisher · View at Google Scholar
  8. R. Rau and P. Brown, “Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity,” Hematological Oncology, vol. 27, no. 4, pp. 171–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Falini, I. Nicoletti, M. F. Martelli, and C. Mecucci, “Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features,” Blood, vol. 109, no. 3, pp. 874–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Ottone, E. Ammatuna, S. Lavorgna et al., “An allele-specific RT-PCR assay to detect type A mutation of the nucleophosmin-1 gene in acute myeloid leukemia,” Journal of Molecular Diagnostics, vol. 10, no. 3, pp. 212–216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Gorello, G. Cazzaniga, F. Alberti et al., “Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations,” Leukemia, vol. 20, no. 6, pp. 1103–1108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Schnittger, C. Schoch, W. Kern et al., “Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype,” Blood, vol. 106, no. 12, pp. 3733–3739, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Dvorakova, Z. Racil, I. Jeziskova et al., “Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations,” American Journal of Hematology, vol. 85, no. 12, pp. 926–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Ammatuna, N. I. Noguera, D. Zangrilli et al., “Rapid detection of nucleophosmin (NPM1) mutations in acute myeloid leukemia by denaturing HPLC,” Clinical Chemistry, vol. 51, no. 11, pp. 2165–2167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. N. I. Noguera, E. Ammatuna, D. Zangrilli et al., “Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia,” Leukemia, vol. 19, no. 8, pp. 1479–1482, 2005. View at Publisher · View at Google Scholar
  16. C. Thiede, E. Creutzig, T. Illmer et al., “Rapid and sensitive typing of NPM1 mutations using LNA-mediated PCR clamping,” Leukemia, vol. 20, no. 10, pp. 1897–1899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Y. Tan, D. A. Westerman, D. A. Carney, J. F. Seymour, S. Juneja, and A. Dobrovic, “Detection of NPM1 exon 12 mutations and FLT3—internal tandem duplications by high resolution melting analysis in normal karyotype acute myeloid leukemia,” Journal of Hematology & Oncology, vol. 1, p. 10, 2008. View at Google Scholar · View at Scopus
  18. N. Boissel, A. Renneville, V. Biggio et al., “Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype,” Blood, vol. 106, no. 10, pp. 3618–3620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Gabert, E. Beillard, V. H. J. van der Velden et al., “Standardization and quality control studies of “real time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer Program,” Leukemia, vol. 17, no. 12, pp. 2318–2357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Beillard, N. Pallisgaard, V. H. J. van der Velden et al., “Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program,” Leukemia, vol. 17, no. 12, pp. 2474–2486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. F. H. Barakat, R. Luthra, C. C. Yin et al., “Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 8, pp. 994–1000, 2011. View at Publisher · View at Google Scholar