Table of Contents
Lymphoma
Volume 2012 (2012), Article ID 405327, 13 pages
http://dx.doi.org/10.1155/2012/405327
Research Article

Combination Phototherapy with a Histone Deacetylase Inhibitor and a Potent DNA-Binding Bibenzimidazole: Effects in Haematological Cell Lines

1Epigenomic Medicine Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC 3004, Australia
2Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia

Received 30 May 2012; Accepted 15 August 2012

Academic Editor: Vincent Ribrag

Copyright © 2012 Annabelle L. Rodd et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Willemze, E. S. Jaffe, G. Burg et al., “WHO-EORTC classification for cutaneous lymphomas,” Blood, vol. 105, no. 10, pp. 3768–3785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Ponte, V. Serrão, and M. Apetato, “Efficacy of narrowband UVB vs. PUVA in patients with early-stage mycosis fungoides,” Journal of the European Academy of Dermatology and Venereology, vol. 24, no. 6, pp. 716–721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Krejsgaard, K. Kopp, E. Ralfkiaer et al., “A novel xenograft model of cutaneous T-cell lymphoma,” Experimental Dermatology, vol. 19, no. 12, pp. 1096–1102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. L. Edelson, “Cutaneous T cell lymphoma: mycosis fungoides, Sezary syndrome, and other variants,” Journal of the American Academy of Dermatology, vol. 2, no. 2, pp. 89–106, 1980. View at Google Scholar · View at Scopus
  5. L. P. H. Yang, “Romidepsin: in the treatment of T-cell lymphoma,” Drugs, vol. 71, no. 11, pp. 1469–1480, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Y. Li, S. Horwitz, A. Moskowitz et al., “Management of cutaneous T cell lymphoma: new and emerging targets and treatment options,” Cancer Management and Research, vol. 4, no. 1, pp. 75–89, 2012. View at Google Scholar
  7. S. Jain and J. Zain, “Romidepsin in the treatment of cutaneous T-cell lymphoma,” Journal of Blood Medicine, vol. 2, no. 1, pp. 37–47, 2011. View at Google Scholar
  8. H. M. Prince and M. Dickinson, “Romidepsin for cutaneous T-cell lymphoma,” Clinical Cancer Research, vol. 18, no. 13, pp. 3509–3515, 2012. View at Google Scholar
  9. F. Glass, K. L. Keller, J. L. Messina et al., “The diagnosis and treatment of cutaneous T-cell lymphoma are challenging due the many clnical and histopathologic presentations of the disease,” Cancer Control, vol. 5, no. 1, 1998. View at Google Scholar
  10. E. Diamandidou, P. R. Cohen, and R. Kurzrock, “Mycosis fungoides and Sezary syndrome,” Blood, vol. 88, no. 7, pp. 2385–2409, 1996. View at Google Scholar · View at Scopus
  11. R. Knobler, M. L. Barr, D. R. Couriel et al., “Extracorporeal photopheresis: past, present, and future,” Journal of the American Academy of Dermatology, vol. 61, no. 4, pp. 652–665, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Q. Xia, K. A. Campbell, and M. J. Clare-Salzler, “Extracorporeal photopheresis-induced immune tolerance: a focus on modulation of antigen-presenting cells and induction of regulatory T cells by apoptotic cells,” Current Opinion in Organ Transplantation, vol. 14, no. 4, pp. 338–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Scarisbrick, “Extracorporeal photopheresis: what is it and when should it be used?” Clinical and Experimental Dermatology, vol. 34, no. 7, pp. 757–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Hutchinson, “The lesions produced by ultraviolet light in DNA containing 5 bromouracil,” Quarterly Reviews of Biophysics, vol. 6, no. 2, pp. 201–246, 1973. View at Google Scholar · View at Scopus
  15. R. Rodriguez, E. Miller, J. F. Fowler et al., “Continuous infusion of halogenated pyrimidines,” International Journal of Radiation Oncology, Biology, Physics, vol. 20, pp. 1380–1382, 1991. View at Google Scholar
  16. T. C. Karagiannis, P. N. Lobachevsky, B. K. Y. Leung, J. M. White, and R. F. Martin, “Receptor-mediated DNA-targeted photoimmunotherapy,” Cancer Research, vol. 66, no. 21, pp. 10548–10552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. T. C. Karagiannis, P. N. Lobachevsky, and R. F. Martin, “DNA targeted UVA photosensitization: characterization of an extremely photopotent iodinated minor groove binding DNA ligand,” Journal of Photochemistry and Photobiology B, vol. 83, no. 3, pp. 195–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. F. Martin, D. P. Kelly, M. Roberts et al., “Comparative studies of UV-induced DNA cleavage by structural isomers of an iodinated DNA ligand,” International Journal of Radiation Biology, vol. 66, pp. 517–521, 1994. View at Google Scholar
  19. R. F. Martin, D. P. Kelly, M. Roberts et al., “DNA cleavage by analogues of iodoHoechst 33258,” Australian Journal of Chemistry, vol. 47, pp. 1751–1769, 1994. View at Google Scholar
  20. V. M. Richon, “Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor,” British Journal of Cancer, vol. 95, no. 1, pp. S2–S6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Tan, S. Cang, Y. Ma, R. L. Petrillo, and D. Liu, “Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents,” Journal of Hematology and Oncology, vol. 3, article 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. S. Mann, J. R. Johnson, M. H. Cohen, R. Justice, and R. Pazdur, “FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma,” Oncologist, vol. 12, no. 10, pp. 1247–1252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Siegel, M. Hussein, C. Belani et al., “Vorinostat in solid and hematologic malignancies,” Journal of Hematology and Oncology, vol. 2, article 31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Batty, G. G. Malouf, and J. P. J. Issa, “Histone deacetylase inhibitors as anti-neoplastic agents,” Cancer Letters, vol. 280, no. 2, pp. 192–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. B. Lozzio and B. B. Lozzio, “Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome,” Blood, vol. 45, no. 3, pp. 321–334, 1975. View at Google Scholar · View at Scopus
  26. D. M. Woodcock, S. Jefferson, M. E. Linsenmeyer et al., “Reversal of the multidrug resistance phenotype with Cremophor EL, a common vehicle for water-insoluble vitamins and drugs,” Cancer Research, vol. 50, no. 14, pp. 4199–4203, 1990. View at Google Scholar · View at Scopus
  27. S. A. Bateman, D. P. Kelly, R. F. Martin, and J. M. White, “DNA binding compounds. VII synthesis, characterization and DNA binding capacity of 1,2-dicarba-closo-dodecaborane bibenzimidazoles related to the DNA minor groove binder Hoechst 33258,” Australian Journal of Chemistry, vol. 52, no. 4, pp. 291–301, 1999. View at Google Scholar · View at Scopus
  28. L. J. Mah, A. El-Osta, and T. C. Karagiannis, “γH2AX as a molecular marker of aging and disease,” Epigenetics, vol. 5, no. 2, pp. 129–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. Mah, R. S. Vasireddy, M. M. Tang, G. T. Georgiadis, A. El-Osta, and T. C. Karagiannis, “Quantification of gammaH2AX foci in response to ionising radiation,” Journal of Visualized Experiments, no. 38, 2010. View at Google Scholar · View at Scopus
  30. L. C. Sambucetti, D. D. Fischer, S. Zabludoff et al., “Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects,” Journal of Biological Chemistry, vol. 274, no. 49, pp. 34940–34947, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. T. C. Karagiannis, H. Kn, and A. El-Osta, “Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments,” Oncogene, vol. 26, no. 27, pp. 3963–3971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Cadet, E. Sage, and T. Douki, “Ultraviolet radiation-mediated damage to cellular DNA,” Mutation Research, vol. 571, no. 1-2, pp. 3–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Lehrmann, L. L. Pritchard, and A. Harel-Bellan, “Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation,” Advances in Cancer Research, vol. 86, pp. 41–65, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Marks, R. A. Rifkind, V. M. Richon, R. Breslow, T. Miller, and W. K. Kelly, “Histone deacetylases and cancer: causes and therapies,” Nature Reviews Cancer, vol. 1, no. 3, pp. 194–202, 2001. View at Google Scholar · View at Scopus
  35. Y. Shao, Z. Gao, P. A. Marks, and X. Jiang, “Apoptotic and autophagic cell death induced by histone deacetylase inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 52, pp. 18030–18035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Dong, L. Wang, C. Y. Wang, T. Yang, M. V. Kumar, and Z. Dong, “Induction of apoptosis in renal tubular cells by histone deacetylase inhibitors, a family of anticancer agents,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 3, pp. 978–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. H. M. Amin, S. Saeed, and S. Alkan, “Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17),” British Journal of Haematology, vol. 115, no. 2, pp. 287–297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Toyooka and Y. Ibuki, “Histone deacetylase inhibitor sodium butyrate enhances the cell killing effect of psoralen plus UVA by attenuating nucleotide excision repair,” Cancer Research, vol. 69, no. 8, pp. 3492–3500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Briggs, K. Ververis, A. L. Rodd, L. J. L. Foong, F. M. D. Silva, and T. C. Karagiannis, “Photosensitization by iodinated DNA minor groove binding ligands: evaluation of DNA double-strand break induction and repair,” Journal of Photochemistry and Photobiology B, vol. 103, no. 2, pp. 145–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. L. Cann and G. G. Hicks, “Regulation of the cellular DNA double-strand break response,” Biochemistry and Cell Biology, vol. 85, no. 6, pp. 663–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Kinner, W. Wu, C. Staudt, and G. Iliakis, “Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin,” Nucleic Acids Research, vol. 36, no. 17, pp. 5678–5694, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. E. C. Friedberg, “DNA damage and repair,” Nature, vol. 421, no. 6921, pp. 436–440, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. L. J. Mah, A. El-Osta, and T. C. Karagiannis, “γh2AX: a sensitive molecular marker of DNA damage and repair,” Leukemia, vol. 24, no. 4, pp. 679–686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. S. Dickey, C. E. Redon, A. J. Nakamura, B. J. Baird, O. A. Sedelnikova, and W. M. Bonner, “H2AX: functional roles and potential applications,” Chromosoma, vol. 118, no. 6, pp. 683–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Kartner and V. Ling, “Multidrug resistance in cancer,” Scientific American, vol. 260, no. 3, pp. 44–51, 1989. View at Google Scholar · View at Scopus
  46. E. K. Baker and A. El-Osta, “The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer,” Experimental Cell Research, vol. 290, no. 2, pp. 177–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Litman, T. E. Druley, W. D. Stein, and S. E. Bates, “From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance,” Cellular and Molecular Life Sciences, vol. 58, no. 7, pp. 931–959, 2001. View at Google Scholar · View at Scopus
  48. A. F. List, K. J. Kopecky, C. L. Willman et al., “Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study,” Blood, vol. 98, no. 12, pp. 3212–3220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Miller and M. Lipman, “Comparison of the yield of infectious virus from clones of human and simian lymphoblastoid lines transformed by Epstein Barr virus,” The Journal of Experimental Medicine, vol. 138, no. 6, pp. 1398–1412, 1973. View at Google Scholar · View at Scopus
  50. J. Werner, G. Henle, C. A. Pinto, R. F. Haff, and W. Henle, “Establishment of continuous lymphoblast cultures from leukocytes of gibbons (Hylobates lar),” International Journal of Cancer, vol. 10, no. 3, pp. 557–567, 1972. View at Google Scholar · View at Scopus
  51. M. J. Peart, K. M. Tainton, A. A. Ruefli et al., “Novel mechanisms of apoptosis induced by histone deacetylase inhibitors,” Cancer Research, vol. 63, no. 15, pp. 4460–4471, 2003. View at Google Scholar · View at Scopus