Table of Contents
Metal-Based Drugs
Volume 3, Issue 4, Pages 197-209
http://dx.doi.org/10.1155/MBD.1996.197

Effects of Hypoxia and Transferrin on Toxicity and DNA Binding of Ruthenium Antitumor Agents in Hela Cells

Merkert Chemistry Center, Boston College, Chestnut Hill 02167, MA, USA

Received 25 June 1996; Accepted 22 July 1996

Copyright © 1996 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nuclear DNA binding and inhibition of growth of HeLa cells in culture were determined after 24 h incubation with the ruthenium anticancer agents cis-[Cl2(NH3)4Ru]Cl (CCR) and (ImH)trans-[(Im)2Cl4Ru] (ICR) as a function of [Ru], Po2, and added transferrin. Consistent with the “activation-by-reduction” hypothesis, cytotoxicity and DNA binding for both complexes increased under reduced oxygen conditions. Consistent with the “transferrin- transport” hypothesis, inhibition of cell growth also increased with added transferrin for both complexes. Despite their differences in charge, reduction potentials and substitution rates, both complexes behaved remarkably similarly indicating a common mechanism of action for both. Under atmospheric Conditions (Po2 = 159 torr), CCR inhibited HeLa cell growth with IC50 = 3.5 μM, while that for ICR was 2.0 μM. The binding of both complexes to DNA (RuDNA/PDNA) correlated with toxicity and was approximately linear in the concentration of the ruthenium complex in the culture medium, [Ru]. For both complexes, IC50 values decrease and DNA binding increases with decreasing log(Po2). In general, DNA binding at all oxygen pressures for both complexes is in the range of one Ru per 1000-2000 DNA base pairs at [Ru] = IC50.