Table of Contents
Molecular Biology International
Volume 2012, Article ID 256982, 10 pages
http://dx.doi.org/10.1155/2012/256982
Review Article

The Impact of HIV Genetic Polymorphisms and Subtype Differences on the Occurrence of Resistance to Antiretroviral Drugs

Jewish General Hospital AIDS Centre, McGill University, 3755 Cote-Ste-Catherine Road, Montreal, QC, Canada H3T 1E2

Received 28 February 2012; Accepted 12 April 2012

Academic Editor: Gilda Tachedjian

Copyright © 2012 Mark A. Wainberg and Bluma G. Brenner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. K. Ariën, G. Vanham, and E. J. Arts, “Is HIV-1 evolving to a less virulent form in humans?” Nature Reviews Microbiology, vol. 5, no. 2, pp. 141–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. J. M. Soares, R. P. Santos, J. A. Pellegrini, E. Sprinz, A. Tanuri, and M. A. Soares, “Epidemiologic and molecular characterization of human immunodeficiency virus type 1 in southern Brazil,” Journal of Acquired Immune Deficiency Syndromes, vol. 34, no. 5, pp. 520–526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. E. A. J. M. Soares, A. M. B. Martínez, T. M. Souza et al., “HIV-1 subtype C dissemination in southern Brazil,” AIDS, vol. 19, supplement 4, pp. S81–S86, 2005. View at Google Scholar · View at Scopus
  4. C. A. Brennan, C. Brites, P. Bodelle et al., “HIV-1 strains identified in Brazilian blood donors: significant prevalence of B/F1 recombinants,” AIDS Research and Human Retroviruses, vol. 23, no. 11, pp. 1434–1441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Locateli, P. H. Stoco, A. T. L. de Queiroz et al., “Molecular epidemiology of HIV-1 in Santa Catarina State confirms increases of subtype c in southern Brazil,” Journal of Medical Virology, vol. 79, no. 10, pp. 1455–1463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Holguín, M. de Mulder, G. Yebra, M. López, and V. Soriano, “Increase of non-B subtypes and recombinants among newly diagnosed HIV-1 native spaniards and immigrants in Spain,” Current HIV Research, vol. 6, no. 4, pp. 327–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Descamps, M. L. Chaix, P. André et al., “French national sentinel survey of antiretroviral drug resistance in patients with HIV-1 primary infection and in antiretroviral-naive chronically infected patients in 2001-2002,” Journal of Acquired Immune Deficiency Syndromes, vol. 38, no. 5, pp. 545–552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. G. Brenner, “Resistance and viral subtypes: how important are the differences and why do they occur?” Current Opinion in HIV and AIDS, vol. 2, no. 2, pp. 94–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Kantor, “Impact of HIV-1 pol diversity on drug resistance and its clinical implications,” Current Opinion in Infectious Diseases, vol. 19, no. 6, pp. 594–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. T. D. Toni, B. Masquelier, E. Lazaro et al., “Characterization of nevirapine (NVP) resistance mutations and HIV type 1 subtype in women from Abidjan (Cote d'Ivoire) after NVP single-dose prophylaxis of HIV type 1 mother-to-child transmission,” AIDS Research and Human Retroviruses, vol. 21, no. 12, pp. 1031–1034, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. H. Eshleman, D. R. Hoover, S. Chen et al., “Nevirapine (NVP) resistance in women with HIV-1 subtype C, compared with subtypes A and D, after the administration of single-dose NVP,” Journal of Infectious Diseases, vol. 192, no. 1, pp. 30–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. H. Eshleman, J. D. Church, S. Chen et al., “Comparison of HIV-1 mother-to-child transmission after single-dose nevirapine prophylaxis among African women with subtypes A, C, and D,” Journal of Acquired Immune Deficiency Syndromes, vol. 42, no. 4, pp. 518–521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Chaix, D. K. Ekouevi, F. Rouet et al., “Low risk of nevirapine resistance mutations in the prevention of mother-to-child transmission of HIV-1: Agence Nationale de Recherches sur le SIDA Ditrame Plus, Abidjan, Cote d'Ivoire,” Journal of Infectious Diseases, vol. 193, no. 4, pp. 482–487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Johnson, J. F. Li, L. Morris et al., “Emergence of drug-resistant HIV-1 after intrapartum administration of single-dose nevirapine is substantially underestimated,” Journal of Infectious Diseases, vol. 192, no. 1, pp. 16–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. S. Flys, S. Chen, D. C. Jones et al., “Quantitative analysis of HIV-1 variants with the K103N resistance mutation after single-dose nevirapine in women with HIV-1 subtypes A, C, and D,” Journal of Acquired Immune Deficiency Syndromes, vol. 42, no. 5, pp. 610–613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Flys, D. V. Nissley, C. W. Claasen et al., “Sensitive drug-resistance assays reveal long-term persistence of HIV-1 variants with the K103N nevirapine (NVP) resistance mutation in some women and infants after the administration of single-dose NVP: HIVNET 012,” Journal of Infectious Diseases, vol. 192, no. 1, pp. 24–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Martínez-Cajas, N. Pant-Pai, M. B. Klein, and M. A. Wainberg, “Role of genetic diversity amongst HIV-1 non-B subtypes in drug resistance: a systematic review of virologic and biochemical evidence,” AIDS Reviews, vol. 10, no. 4, pp. 212–223, 2008. View at Google Scholar · View at Scopus
  18. D. Descamps, G. Collin, F. Letourneur et al., “Susceptibility of human immunodeficiency virus type 1 group O isolates to antiretroviral agents: in vitro phenotypic and genotypic analyses,” Journal of Virology, vol. 71, no. 11, pp. 8893–8898, 1997. View at Google Scholar · View at Scopus
  19. E. Tuaillon, M. Gueudin, V. Lemée et al., “Phenotypic susceptibility to nonnucleoside inhibitors of virion-associated reverse transcriptase from different HIV types and groups,” Journal of Acquired Immune Deficiency Syndromes, vol. 37, no. 5, pp. 1543–1549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Vergne, J. Snoeck, A. Aghokeng et al., “Genotypic drug resistance interpretation algorithms display high levels of discordance when applied to non-B strains from HIV-1 naive and treated patients,” FEMS Immunology and Medical Microbiology, vol. 46, no. 1, pp. 53–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Gifford, T. de Oliveira, A. Rambaut et al., “Assessment of automated genotyping protocols as tools for surveillance of HIV-1 genetic diversity,” AIDS, vol. 20, no. 11, pp. 1521–1529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Y. Rhee, R. Kantor, D. A. Katzenstein et al., “HIV-1 pol mutation frequency by subtype and treatment experience: extension of the HIVseq program to seven non-B subtypes,” AIDS, vol. 20, no. 5, pp. 643–651, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Novitsky, C. W. Wester, V. DeGruttola et al., “The reverse transcriptase 67N 70R 215Y genotype is the predominant TAM pathway associated with virologic failure among HIV type 1C-infected adults treated with ZDV/ddI-containing HAART in Southern Africa,” AIDS Research and Human Retroviruses, vol. 23, no. 7, pp. 868–878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. E. Barth, A. M. Wensing, H. A. Tempelman, R. Moraba, R. Schuurman, and A. I. Hoepelman, “Rapid accumulation of nonnucleoside reverse transcriptase inhibitor-associated resistance: evidence of transmitted resistance in rural South Africa,” AIDS, vol. 22, no. 16, pp. 2210–2212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Deshpande, V. Jauvin, N. Magnin et al., “Resistance mutations in subtype C HIV type 1 isolates from Indian patients of Mumbai receiving NRTIs plus NNRTIs and experiencing a treatment failure: resistance to AR,” AIDS Research and Human Retroviruses, vol. 23, no. 2, pp. 335–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. Hosseinipour, J. J. G. van Oosterhout, R. Weigel et al., “The public health approach to identify antiretroviral therapy failure: high-level nucleoside reverse transcriptase inhibitor resistance among Malawians failing first-line antiretroviral therapy,” AIDS, vol. 23, no. 9, pp. 1127–1134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. V. C. Marconi, H. Sunpath, Z. Lu et al., “Prevalence of HIV-1 drug resistance after failure of a first highly active antiretroviral therapy regimen in KwaZulu Natal, South Africa,” Clinical Infectious Diseases, vol. 46, no. 10, pp. 1589–1597, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Doualla-Bell, A. Avalos, B. Brenner et al., “High prevalence of the K65R mutation in human immunodeficiency virus type 1 subtype C isolates from infected patients in Botswana treated with didanosine-based regimens,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 12, pp. 4182–4185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Orrell, R. P. Walensky, E. Losina, J. Pitt, K. A. Freedberg, and R. Wood, “HIV type-1 clade C resistance genotypes in treatment-naive patients and after first virological failure in a large community antiretroviral therapy programme,” Antiviral Therapy, vol. 14, no. 4, pp. 523–531, 2009. View at Google Scholar · View at Scopus
  30. B. G. Brenner and D. Coutsinos, “The K65R mutation in HIV-1 reverse transcriptase: genetic barriers, resistance profile and clinical implications,” HIV Therapy, vol. 3, no. 6, pp. 583–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Turner, E. Shahar, E. Katchman et al., “Prevalence of the K65R resistance reverse transcriptase mutation in different HIV-1 subtypes in Israel,” Journal of Medical Virology, vol. 81, no. 9, pp. 1509–1512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Deshpande, A. C. Jeannot, M. H. Schrive, L. Wittkop, P. Pinson, and H. J. Fleury, “Analysis of RT sequences of subtype C HIV-type 1 isolates from indian patients at failure of a first-line treatment according to clinical and/or immunological WHO guidelines,” AIDS Research and Human Retroviruses, vol. 26, no. 3, pp. 343–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Ayele, Y. Mekonnen, T. Messele et al., “Differences in HIV type 1 RNA plasma load profile of closely related cocirculating ethiopian subtype C strains: C and C',” AIDS Research and Human Retroviruses, vol. 26, no. 7, pp. 805–813, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Fontella, M. A. Soares, and C. G. Schrago, “On the origin of HIV-1 subtype C in South America,” AIDS, vol. 22, no. 15, pp. 2001–2011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. B. G. Brenner, M. Oliveira, F. Doualla-Bell et al., “HIV-1 subtype C viruses rapidly develop K65R resistance to tenofovir in cell culture,” AIDS, vol. 20, no. 9, pp. F9–F13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. F. Invernizzi, D. Coutsinos, M. Oliveira, D. Moisi, B. G. Brenner, and M. A. Wainberg, “Signature nucleotide polymorphisms at positions 64 and 65 in reverse transcriptase favor the selection of the K65R resistance mutation in HIV-1 subtype C,” Journal of Infectious Diseases, vol. 200, no. 8, pp. 1202–1206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Coutsinos, C. F. Invernizzi, H. Xu et al., “Template usage is responsible for the preferential acquisition of the K65R reverse transcriptase mutation in subtype C variants of human immunodeficiency virus type 1,” Journal of Virology, vol. 83, no. 4, pp. 2029–2033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Coutsinos, C. F. Invernizzi, H. Xu, B. G. Brenner, and M. A. Wainberg, “Factors affecting template usage in the development of K65R resistance in subtype C variants of HIV type-1,” Antiviral Chemistry and Chemotherapy, vol. 20, no. 3, pp. 117–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. R. Harrigan, C. W. Sheen, V. S. Gill et al., “Silent mutations are selected in HIV-1 reverse transcriptase and affect enzymatic efficiency,” AIDS, vol. 22, no. 18, pp. 2501–2508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Varghese, E. Wang, F. Babrzadeh et al., “Nucleic acid template and the risk of a PCR-induced HIV-1 drug resistance mutation,” PLoS ONE, vol. 5, no. 6, Article ID e10992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. T. D'Aquila, A. M. Geretti, J. H. Horton et al., “Tenofovir (TDF)-selected or abacavir (ABC)-selected low-frequency HIV type 1 subpopulations during failure with persistent viremia as detected by ultradeep pyrosequencing,” AIDS Research and Human Retroviruses, vol. 27, no. 2, pp. 201–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Zolfo, J. M. Schapiro, V. Phan et al., “Genotypic impact of prolonged detectable HIV type 1 RNA viral load after HAART failure in a CRF01-AE-infected cohort,” AIDS Research and Human Retroviruses, vol. 27, no. 7, pp. 727–735, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. R. K. Gupta, I. L. Chrystie, S. O'Shea, J. E. Mullen, R. Kulasegaram, and C. Y. W. Tong, “K65R and Y181C are less prevalent in HAART-experienced HIV-1 subtype A patients,” AIDS, vol. 19, no. 16, pp. 1916–1919, 2005. View at Google Scholar · View at Scopus
  44. D. M. Tebit, L. Sangaré, A. Makamtse et al., “HIV drug resistance pattern among HAART-exposed patients with suboptimal virological response in Ouagadougou, Burkina Faso,” Journal of Acquired Immune Deficiency Syndromes, vol. 49, no. 1, pp. 17–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Loemba, B. Brenner, M. A. Parniak et al., “Genetic divergence of human immunodeficiency virus type 1 Ethiopian clade C reverse transcriptase (RT) and rapid development of resistance against nonnucleoside inhibitors of RT,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 7, pp. 2087–2094, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Brenner, D. Turner, M. Oliveira et al., “A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors,” AIDS, vol. 17, no. 1, pp. F1–F5, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Y. Hsu, R. Subramaniam, L. Bacheler, and N. I. Paton, “Characterization of mutations in CRF01_AE virus isolates from antiretroviral treatment-naive and -experienced patients in Singapore,” Journal of Acquired Immune Deficiency Syndromes, vol. 38, no. 1, pp. 5–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Rajesh, R. Karunaianantham, P. R. Narayanan, and S. Swaminathan, “Antiretroviral drug-resistant mutations at baseline and at time of failure of antiretroviral therapy in HIV type 1-coinfected TB patients,” AIDS Research and Human Retroviruses, vol. 25, no. 11, pp. 1179–1185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Grossman, V. Istomin, D. Averbuch et al., “Genetic variation at NNRTI resistance-associated positions in patients infected with HIV-1 subtype C,” AIDS, vol. 18, no. 6, pp. 909–915, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. M. T. Lai, M. Lu, P. J. Felock et al., “Distinct mutation pathways of non-subtype B HIV-1 during in vitro resistance selection with nonnucleoside reverse transcriptase inhibitors,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 11, pp. 4812–4824, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Aad, B. Abbott, J. Abdallah et al., “Search for new phenomena in tt¯ events with large missing transverse momentum in proton-proton collisions at s=7 TeV with the ATLAS detector,” Physical Review Letters, vol. 108, no. 4, Article ID 041805, 2012. View at Publisher · View at Google Scholar
  52. K. Ariyoshi, M. Matsuda, H. Miura, S. Tateishi, K. Yamada, and W. Sugiura, “Patterns of point mutations associated with antiretroviral drug treatment failure in CRF01_AE (subtype E) infection differ from subtype B infection,” Journal of Acquired Immune Deficiency Syndromes, vol. 33, no. 3, pp. 336–342, 2003. View at Google Scholar · View at Scopus
  53. M. L. Chaix, F. Rouet, K. A. Kouakoussui et al., “Genotypic human immunodeficiency virus type 1 drug resistance in highly active antiretroviral therapy-treated children in Abidjan, Cote d'Ivoire,” Pediatric Infectious Disease Journal, vol. 24, no. 12, pp. 1072–1076, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Sukasem, V. Churdboonchart, W. Sukeepaisarncharoen et al., “Genotypic resistance profiles in antiretroviral-naive HIV-1 infections before and after initiation of first-line HAART: impact of polymorphism on resistance to therapy,” International Journal of Antimicrobial Agents, vol. 31, no. 3, pp. 277–281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Grossman, E. E. Paxinos, D. Averbuch et al., “Mutation D30N is not preferentially selected by human immunodeficiency virus type 1 subtype C in the development of resistance to nelfinavir,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 6, pp. 2159–2165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Doualla-Bell, A. Avalos, T. Gaolathe et al., “Impact of human immunodeficiency virus type 1 subtype C on drug resistance mutations in patients from Botswana failing a nelfinavir-containing regimen,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 6, pp. 2210–2213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. A. T. Dumans, M. A. Soares, E. S. Machado et al., “Synonymous genetic polymorphisms within Brazilian human immunodefidency virus type 1 subtypes may influence mutational routes to drug resistance,” Journal of Infectious Diseases, vol. 189, no. 7, pp. 1232–1238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Calazans, R. Brindeiro, P. Brindeiro et al., “Low accumulation of L90M in protease from subtype F HIV-1 with resistance to protease inhibitors is caused by the L89M polymorphism,” Journal of Infectious Diseases, vol. 191, no. 11, pp. 1961–1970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Lisovsky, S. M. Schader, J. L. Martinez-Cajas, M. Oliveira, D. Moisi, and M. A. Wainberg, “HIV-1 protease codon 36 polymorphisms and differential development of resistance to nelfinavir, lopinavir, and atazanavir in different HIV-1 subtypes,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 7, pp. 2878–2885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. R. O. Soares, P. R. Batista, M. G. S. Costa, L. E. Dardenne, P. G. Pascutti, and M. A. Soares, “Understanding the HIV-1 protease nelfinavir resistance mutation D30N in subtypes B and C through molecular dynamics simulations,” Journal of Molecular Graphics and Modelling, vol. 29, no. 2, pp. 137–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. L. M. F. Gonzalez, R. M. Brindeiro, R. S. Aguiar et al., “Impact of nelfinavir resistance mutations on in vitro phenotype, fitness, and replication capacity of human immunodeficiency virus type 1 with subtype B and C proteases,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp. 3552–3555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Kantor and D. Katzenstein, “Polymorphism in HIV-1 non-subtype b protease and reverse transcriptase and its potential impact on drug susceptibility and drug resistance evolution,” AIDS Reviews, vol. 5, no. 1, pp. 25–35, 2003. View at Google Scholar · View at Scopus
  63. R. Kantor, D. A. Katzenstein, B. Efron et al., “Impact of HIV-1 subtype and antiretroviral therapy on protease and reverse transcriptase genotype: results of a global collaboration,” PLoS Medicine, vol. 2, Article ID e112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. E. A. Soares, A. F. Santos, T. M. Sousa et al., “Differential drug resistance acquisition in HIV-1 of subtypes B and C,” PloS ONE, vol. 2, no. 1, article e730, 2007. View at Google Scholar · View at Scopus
  65. E. Sprinz, E. M. Netto, M. Patelli et al., “Primary antiretroviral drug resistance among HIV type 1-infected individuals in Brazil,” AIDS Research and Human Retroviruses, vol. 25, no. 9, pp. 861–867, 2009. View at Google Scholar
  66. R. Kantor, R. W. Shafer, and D. Katzenstein, “The HIV-1 Non-subtype B workgroup: an international collaboration for the collection and analysis of HIV-1 non-subtype B data,” MedGenMed, vol. 7, no. 1, article 71, 2005. View at Google Scholar · View at Scopus
  67. G. S. Gottlieb, N. M. D. Badiane, S. E. Hawes et al., “Emergence of multiclass drug-resistance in HIV-2 in antiretroviral-treated individuals in Senegal: implications for HIV-2 treatment in resouce-limited West Africa,” Clinical Infectious Diseases, vol. 48, no. 4, pp. 476–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. M. L. Ntemgwa, T. D. Toni, B. G. Brenner, R. J. Camacho, and M. A. Wainberg, “Antiretroviral drug resistance in human immunodeficiency virus type 2,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 9, pp. 3611–3619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Sylla, A. Chamberland, C. Boileau et al., “Characterization of drug resistance in antiretroviral-treated patients infected with HIV-1 CRF02_AG and AGK subtypes in Mali and Burkina Faso,” Antiviral Therapy, vol. 13, no. 1, pp. 141–148, 2008. View at Google Scholar · View at Scopus
  70. M. Kinomoto, R. Appiah-Opong, J. A. M. Brandful et al., “HIV-1 proteases from drug-naive West African patients are differentially less susceptible to protease inhibitors,” Clinical Infectious Diseases, vol. 41, no. 2, pp. 243–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. H. J. Fleury, T. Toni, N. T. H. Lan et al., “Susceptibility to antiretroviral drugs of CRF01_AE, CRF02_AG, and subtype C viruses from untreated patients of Africa and Asia: comparative genotypic and phenotypic data,” AIDS Research and Human Retroviruses, vol. 22, no. 4, pp. 357–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. K. A. Delviks-Frankenberry, G. N. Nikolenko, F. Maldarelli, S. Hase, Y. Takebe, and V. K. Pathak, “Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01-AE are associated with higher levels of resistance to 3′-azido-3′-deoxythymidine,” Journal of Virology, vol. 83, no. 17, pp. 8502–8513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. K. A. Delviks-Frankenberry, G. N. Nikolenko, R. Barr, and V. K. Pathak, “Mutations in human immunodeficiency virus type 1 RNase H primer grip enhance 3′-azido-3′-deoxythymidine resistance,” Journal of Virology, vol. 81, no. 13, pp. 6837–6845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. S. H. Yap, C. W. Sheen, J. Fahey et al., “N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance,” PLoS Medicine, vol. 4, no. 12, Article ID e335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. R. K. Gupta, A. Kohli, A. L. McCormick, G. J. Towers, D. Pillay, and C. M. Parry, “Full-length HIV-1 gag determines protease inhibitor susceptibility within in-vitro assays,” AIDS, vol. 24, no. 11, pp. 1651–1655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. A. F. Santos, D. M. Tebit, M. S. Lalonde et al., “The role of natural polymorphisms in HIV-1 CRF02_AG protease on protease inhibitor hypersusceptibility,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 5, pp. 2719–2725, 2012. View at Google Scholar
  77. T. Bar-Magen, D. A. Donahue, E. I. McDonough et al., “HIV-1 subtype B and C integrase enzymes exhibit differential patterns of resistance to integrase inhibitors in biochemical assays,” AIDS, vol. 24, no. 14, pp. 2171–2179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Goldgur, R. Craigie, G. H. Cohen et al., “Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13040–13043, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Bar-Magen, R. D. Sloan, V. H. Faltenbacher et al., “Comparative biochemical analysis of HIV-1 subtype B and C integrase enzymes,” Retrovirology, vol. 6, article 103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. B. G. Brenner, M. Lowe, D. Moisi et al., “Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors,” Journal of Medical Virology, vol. 83, no. 5, pp. 751–759, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Z. Loizidou, I. Kousiappa, C. D. Zeinalipour-Yazdi, D. A. M. C. Van de Vijver, and L. G. Kostrikis, “Implications of HIV-1 M group polymorphisms on integrase inhibitor efficacy and resistance: genetic and structural in silico analyses,” Biochemistry, vol. 48, no. 1, pp. 4–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Bar-Magen, R. D. Sloan, D. A. Donahue et al., “Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor,” Journal of Virology, vol. 84, no. 18, pp. 9210–9216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. I. Malet, V. Fourati, C. Charpentier et al., “The HIV-1 integrase G118R mutation confers raltegravir resistance to the CRF02_AG HIV-1 subtype,” Journal of Antimicrobial Chemotherapy, vol. 66, pp. 2827–2830, 2011. View at Publisher · View at Google Scholar
  84. K. E. Hightower, R. Wang, F. Deanda et al., “Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes,” Antimicrobial Agents and Chemotherapy, vol. 55, pp. 4552–4559, 2011. View at Google Scholar
  85. P. K. Quashie, T. Mesplede, Y. S. Han et al., “Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir,” Journal of Virology, vol. 86, no. 5, pp. 2696–2705, 2012. View at Google Scholar
  86. A. U. Scherrer, B. Ledergerber, V. von Wyl et al., “Improved virological outcome in White patients infected with HIV-1 non-B subtypes compared to subtype B,” Clinical Infectious Diseases, vol. 53, pp. 1143–1152, 2011. View at Google Scholar
  87. E. A. Soares, A. F. Santos, and M. A. Soares, “HIV-1 subtype and virological response to antiretroviral therapy: acquired drug resistance,” Clinical Infectious Diseases, vol. 54, pp. 738–739, 2012. View at Google Scholar
  88. A. Velazquez-Campoy, S. Vega, and E. Freire, “Amplification of the effects of drug resistance mutations by background polymorphisms in HIV-1 protease from African subtypes,” Biochemistry, vol. 41, no. 27, pp. 8613–8619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. J. B. Nachega, M. Hislop, D. W. Dowdy, R. E. Chaisson, L. Regensberg, and G. Maartens, “Adherence to nonnucleoside reverse transcriptase inhibitor-based HIV therapy and virologic outcomes,” Annals of Internal Medicine, vol. 146, no. 8, pp. 564–573, 2007. View at Google Scholar · View at Scopus
  90. N. Richard, M. Juntilla, A. Abraha et al., “High prevalence of antiretroviral resistance in treated Ugandans infected with non-subtype B human immunodeficiency virus type 1,” AIDS Research and Human Retroviruses, vol. 20, no. 4, pp. 355–364, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. H. T. Xu, J. L. Martinez-Cajas, M. L. Ntemgwa et al., “Effects of the K65R and K65R/M184V reverse transcriptase mutations in subtype C HIV on enzyme function and drug resistance,” Retrovirology, vol. 6, article 14, 2009. View at Publisher · View at Google Scholar · View at Scopus