Table of Contents
Molecular Biology International
Volume 2012, Article ID 283974, 10 pages
http://dx.doi.org/10.1155/2012/283974
Research Article

ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK

Received 9 March 2012; Revised 20 April 2012; Accepted 24 April 2012

Academic Editor: Mouldy Sioud

Copyright © 2012 Rebecca Louise Harris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. H. Weigel and J. H. N. Yik, “Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors,” Biochimica et Biophysica Acta, vol. 1572, no. 2-3, pp. 341–363, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. L. G. Ellies, D. Ditto, G. G. Levy et al., “Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 10042–10047, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. K. Grewal, S. Uchiyama, D. Ditto et al., “The Ashwell receptor mitigates the lethal coagulopathy of sepsis,” Nature Medicine, vol. 14, no. 6, pp. 648–655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Zijderhand-Bleekemolen, A. L. Schwartz, J. W. Slot, G. J. Strous, and H. J. Geuze, “Ligand- and weak base-induced redistribution of asialoglycoprotein receptors in hepatoma cells,” Journal of Cell Biology, vol. 104, no. 6, pp. 1647–1654, 1987. View at Google Scholar · View at Scopus
  5. M. Ii, H. Kurata, N. Itoh, I. Yamashina, and T. Kawasaki, “Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for galactose and N-acetylgalactosamine,” The Journal of Biological Chemistry, vol. 265, no. 19, pp. 11295–11298, 1990. View at Google Scholar · View at Scopus
  6. J. Z. Mu, R. J. Fallon, P. E. Swanson, S. B. Carroll, M. Danaher, and D. H. Alpers, “Expression of an endogenous asialoglycoprotein receptor in a human intestinal epithelial cell line, Caco-2,” Biochimica et Biophysica Acta, vol. 1222, no. 3, pp. 483–491, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Monroe and B. E. Huber, “The major form of the murine asialoglycoprotein receptor: cDNA sequence and expression in liver, testis and epididymis,” Gene, vol. 148, no. 2, pp. 237–244, Erratum in Gene, vol. 161, no. 2, pp. 307, 1995.
  8. F. Pacifico, D. Liguoro, R. Acquaviva, S. Formisano, and E. Consiglio, “Thyroglobulin binding and TSH regulation of the RHL-1 subunit of the asialoglycoprotein receptor in rat thyroid,” Biochimie, vol. 81, no. 5, pp. 493–496, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. P. H. Weigel, “Galactosyl and N-acetylgalactosaminyl homeostasis: a function for mammalian asialoglycoprotein receptors,” BioEssays, vol. 16, no. 7, pp. 519–524, 1994. View at Google Scholar · View at Scopus
  10. C. Plank, K. Zatloukal, M. Cotten, K. Mechtler, and E. Wagner, “Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand,” Bioconjugate Chemistry, vol. 3, no. 6, pp. 533–539, 1992. View at Google Scholar · View at Scopus
  11. D. B. Rozema, D. L. Lewis, D. H. Wakefield et al., “Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 12982–12987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wu, M. H. Nantz, and M. A. Zern, “Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications,” Frontiers in Bioscience, vol. 7, pp. d717–725, 2002. View at Google Scholar · View at Scopus
  13. J. Bischoff and H. F. Lodish, “Two asialoglycoprotein receptor polypeptides in human hepatoma cells,” The Journal of Biological Chemistry, vol. 262, no. 24, pp. 11825–11832, 1987. View at Google Scholar · View at Scopus
  14. National Centre for Biotechnology Information Gene Database, “Asialoglycoprotein receptor 1 [homo sapiens],” http://www.ncbi.nlm.nih.gov/gene/432.
  15. National Centre for Biotechnology Information Gene Database, “Asialoglycoprotein receptor 2 [homo sapiens],” http://www.ncbi.nlm.nih.gov/gene/433.
  16. Y. I. Henis, Z. Katzir, M. A. Shia, and H. F. Lodish, “Oligomeric structure of the human asialoglycoprotein receptor: nature and stoichiometry of mutual complexes containing H1 and H2 polypeptides assessed by fluorescence photobleaching recovery,” Journal of Cell Biology, vol. 111, no. 4, pp. 1409–1418, 1990. View at Google Scholar · View at Scopus
  17. J. Liu, B. Hu, Y. Yang et al., “A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes,” PLoS ONE, vol. 5, no. 9, article e12934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Tolchinsky, M. H. Yuk, M. Ayalon, H. F. Lodish, and G. Z. Lederkremer, “Membrane-bound versus secreted forms of human asialoglycoprotein receptor subunits: role of a juxtamembrane pentapeptide,” The Journal of Biological Chemistry, vol. 271, no. 24, pp. 14496–14503, 1996. View at Google Scholar · View at Scopus
  19. H. Yago, Y. Kohgo, J. Kato, N. Watanabe, S. Sakamaki, and Y. Niitsu, “Detection and quantification of soluble asialoglycoprotein receptor in human serum,” Hepatology, vol. 21, no. 2, pp. 383–388, 1995. View at Google Scholar · View at Scopus
  20. National Centre for Biotechnology Information, http://www.ncbi.nlm.nih.gov/.
  21. Medical Research Council, http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Useofhumantissue/index.htm.
  22. B. B. Knowles, C. C. Howe, and D. P. Aden, “Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen,” Science, vol. 209, no. 4455, pp. 497–499, 1980. View at Google Scholar · View at Scopus
  23. S. Tsuchiya, M. Yamabe, and Y. Yamaguchi, “Establishment and characterization of a human acute monocytic leukemia cell line (THP-1),” International Journal of Cancer, vol. 26, no. 2, pp. 171–176, 1980. View at Google Scholar · View at Scopus
  24. A. L. Schwartz, S. E. Fridovich, B. B. Knowles, and H. F. Lodish, “Characterization of the asialoglycoprotein receptor in a continuous hepatoma line,” The Journal of Biological Chemistry, vol. 256, no. 17, pp. 8878–8881, 1981. View at Google Scholar · View at Scopus
  25. S. Keeney, “Use of robotics in high-throughput DNA sequencing,” Methods in Molecular Biology, vol. 688, pp. 227–237, 2011. View at Google Scholar · View at Scopus
  26. B. Budowle and R. C. Allen, “Discontinuous polyacrylamide gel electrophoresis of DNA fragments,” in Protocols in Human Molecular Genetics, Methods in Molecular Biology, C. G. Mathew, Ed., vol. 9, Humana Press, Clifton, NJ, USA, 1991. View at Google Scholar
  27. T. Lion, “Current recommendations for positive controls in RT-PCR assays,” Leukemia, vol. 15, no. 7, pp. 1033–1037, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. National Centre for Biotechnology Information dbSNP Short Genetic Variations, http://www.ncbi.nlm.nih.gov/SNP/.
  29. E. V. Groman, P. M. Enriquez, C. Jung, and L. Josephson, “Arabinogalactan for hepatic drug delivery,” Bioconjugate Chemistry, vol. 5, no. 6, pp. 547–556, 1994. View at Google Scholar · View at Scopus
  30. Y. C. Lee, R. R. Townsend, M. R. Hardy et al., “Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin. Dependence on fine structural features,” The Journal of Biological Chemistry, vol. 258, no. 1, pp. 199–202, 1983. View at Google Scholar · View at Scopus
  31. L. Fiume, G. Di Stefano, C. Busi et al., “Liver targeting of antiviral nucleoside analogues through the asialoglycoprotein receptor,” Journal of Viral Hepatitis, vol. 4, no. 6, pp. 363–370, 1997. View at Google Scholar · View at Scopus