Table of Contents
Molecular Biology International
Volume 2012, Article ID 424768, 9 pages
http://dx.doi.org/10.1155/2012/424768
Review Article

Restriction of Retroviral Replication by Tetherin/BST-2

Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA

Received 27 March 2012; Accepted 26 May 2012

Academic Editor: Abraham Brass

Copyright © 2012 Jason Hammonds et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Strebel, T. Klimkait, and M. A. Martin, “A novel gene of HIV-1, vpu, and its 16-kilodalton product,” Science, vol. 241, no. 4870, pp. 1221–1223, 1988. View at Google Scholar · View at Scopus
  2. E. F. Terwilliger, B. Godin, J. G. Sodroski, and W. A. Haseltine, “Construction and use of a replication-competent human immunodeficiency virus (HIV-1) that expresses the chloramphenicol acetyltransferase enzyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 10, pp. 3857–3861, 1989. View at Google Scholar · View at Scopus
  3. T. Klimkait, K. Strebel, M. D. Hoggan, M. A. Martin, and J. M. Orenstein, “The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release,” Journal of Virology, vol. 64, no. 2, pp. 621–629, 1990. View at Google Scholar · View at Scopus
  4. R. L. Willey, A. Buckler-White, and K. Strebel, “Sequences present in the cytoplasmic domain of CD4 are necessary and sufficient to confer sensitivity to the human immunodeficiency virus type 1 Vpu protein,” Journal of Virology, vol. 68, no. 2, pp. 1207–1212, 1994. View at Google Scholar · View at Scopus
  5. M. E. Lenburg and N. R. Landau, “Vpu-induced degradation of CD4: requirement for specific amino acid residues in the cytoplasmic domain of CD4,” Journal of Virology, vol. 67, no. 12, pp. 7238–7245, 1993. View at Google Scholar · View at Scopus
  6. M. J. Vincent, N. U. Raja, and M. A. Jabbar, “Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum,” Journal of Virology, vol. 67, no. 9, pp. 5538–5549, 1993. View at Google Scholar · View at Scopus
  7. R. J. Geraghty and A. T. Panganiban, “Human immunodeficiency virus type 1 Vpu has a CD4- and an envelope glycoprotein-independent function,” Journal of Virology, vol. 67, no. 7, pp. 4190–4194, 1993. View at Google Scholar · View at Scopus
  8. M. Y. Chen, F. Maldarelli, M. K. Karczewski, R. L. Willey, and K. Strebel, “Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity,” Journal of Virology, vol. 67, no. 7, pp. 3877–3884, 1993. View at Google Scholar · View at Scopus
  9. R. L. Willey, F. Maldarelli, M. A. Martin, and K. Strebel, “Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4,” Journal of Virology, vol. 66, no. 12, pp. 7193–7200, 1992. View at Google Scholar · View at Scopus
  10. F. Margottin, S. P. Bour, H. Durand et al., “A novel human WD protein, h-βTrCP, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif,” Molecular Cell, vol. 1, no. 4, pp. 565–574, 1998. View at Google Scholar · View at Scopus
  11. U. Schubert, L. C. Antón, I. Bačík et al., “CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin- conjugating pathway,” Journal of Virology, vol. 72, no. 3, pp. 2280–2288, 1998. View at Google Scholar · View at Scopus
  12. M. Paul and M. A. Jabbar, “Phosphorylation of both phosphoacceptor sites in the HIV-1 Vpu cytoplasmic domain is essential for Vpu-mediated ER degradation of CD4,” Virology, vol. 232, no. 1, pp. 207–216, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Bour and K. Strebel, “The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release,” Microbes and Infection, vol. 5, no. 11, pp. 1029–1039, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Sheehy, N. C. Gaddis, J. D. Choi, and M. H. Malim, “Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein,” Nature, vol. 418, no. 6898, pp. 646–650, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. M. Simon, D. L. Miller, R. A. M. Fouchier, M. A. Soares, K. W. C. Peden, and M. H. Malim, “The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission,” The EMBO Journal, vol. 17, no. 5, pp. 1259–1267, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. R. J. Geraghty, K. J. Talbot, M. Callahan, W. Harper, and A. T. Panganiban, “Cell type-dependence for Vpu function,” Journal of Medical Primatology, vol. 23, no. 2-3, pp. 146–150, 1994. View at Google Scholar · View at Scopus
  17. H. Sakai, K. Tokunaga, M. Kawamura, and A. Adachi, “Function of human immunodeficiency virus type 1 Vpu protein in various cell types,” Journal of General Virology, vol. 76, part 11, pp. 2717–2722, 1995. View at Google Scholar · View at Scopus
  18. V. Varthakavi, R. M. Smith, S. P. Bour, K. Strebel, and P. Spearman, “Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15154–15159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Hsu, J. Seharaseyon, P. Dong, S. Bour, and E. Marbán, “Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel,” Molecular Cell, vol. 14, no. 2, pp. 259–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Varthakavi, E. Heimann-Nichols, R. M. Smith et al., “Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu,” Nature Medicine, vol. 14, no. 6, pp. 641–647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J. Neil, S. W. Eastman, N. Jouvenet, and P. D. Bieniasz, “HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane,” PLoS Pathogens, vol. 2, no. 5, article e39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. D. Neil, V. Sandrin, W. I. Sundquist, and P. D. Bieniasz, “An interferon-alpha-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein,” Cell Host and Microbe, vol. 2, no. 3, pp. 193–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. D. Neil, T. Zang, and P. D. Bieniasz, “Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu,” Nature, vol. 451, no. 7177, pp. 425–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Ishikawa, T. Kaisho, H. Tomizawa et al., “Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth,” Genomics, vol. 26, no. 3, pp. 527–534, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Goto, S. J. Kennel, M. Abe et al., “A novel membrane antigen selectively expressed on terminally differentiated human B cells,” Blood, vol. 84, no. 6, pp. 1922–1930, 1994. View at Google Scholar · View at Scopus
  26. M. Vidal-Laliena, X. Romero, S. March, V. Requena, J. Petriz, and P. Engel, “Characterization of antibodies submitted to the B cell section of the 8th Human Leukocyte Differentiation Antigens Workshop by flow cytometry and immunohistochemistry,” Cellular Immunology, vol. 236, no. 1-2, pp. 6–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. L. Blasius, E. Giurisato, M. Cella, R. D. Schreiber, A. S. Shaw, and M. Colonna, “Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation,” Journal of Immunology, vol. 177, no. 5, pp. 3260–3265, 2006. View at Google Scholar · View at Scopus
  28. R. Rollason, V. Korolchuk, C. Hamilton, P. Schu, and G. Banting, “Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif,” Journal of Cell Science, vol. 120, no. 21, pp. 3850–3858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Bartee, A. McCormack, and K. Früh, “Quantitative membrane proteomics reveals new cellular targets of viral immune modulators,” PLoS Pathogens, vol. 2, no. 10, article e107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Van Damme, D. Goff, C. Katsura et al., “The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein,” Cell Host and Microbe, vol. 3, no. 4, pp. 245–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Kupzig, V. Korolchuk, R. Rollason, A. Sugden, A. Wilde, and G. Banting, “Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology,” Traffic, vol. 4, no. 10, pp. 694–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Ohtomo, Y. Sugamata, Y. Ozaki et al., “Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells,” Biochemical and Biophysical Research Communications, vol. 258, no. 3, pp. 583–591, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. A. J. Andrew, E. Miyagi, S. Kao, and K. Strebel, “The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu,” Retrovirology, vol. 6, article 80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Perez-Caballero, T. Zang, A. Ebrahimi et al., “Tetherin inhibits HIV-1 release by directly tethering virions to cells,” Cell, vol. 139, no. 3, pp. 499–511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Hinz, N. Miguet, G. Natrajan et al., “Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain,” Cell Host and Microbe, vol. 7, no. 4, pp. 314–323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. L. Schubert, Q. Zhai, V. Sandrin et al., “Structural and functional studies on the extracellular domain of BST2/tetherin in reduced and oxidized conformations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 42, pp. 17951–17956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Swiecki, S. M. Scheaffer, M. Allaire, D. H. Fremont, M. Colonna, and T. J. Brett, “Structural and biophysical analysis of BST-2/tetherin ectodomains reveals an evolutionary conserved design to inhibit virus release,” The Journal of Biological Chemistry, vol. 286, no. 4, pp. 2987–2997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Yang, J. Wang, X. Jia et al., “Structural insight into the mechanisms of enveloped virus tethering by tetherin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18428–18432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Fitzpatrick, M. Skasko, T. J. Deerinck, J. Crum, M. H. Ellisman, and J. Guatelli, “Direct restriction of virus release and incorporation of the interferon-induced protein BST-2 into HIV-1 particles,” PLoS Pathogens, vol. 6, no. 3, Article ID e1000701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Hammonds, J. J. Wang, H. Yi, and P. Spearman, “Immunoelectron microscopic evidence for tetherin/BST2 as the physical bridge between HIV-1 virions and the plasma membrane,” PLoS Pathogens, vol. 6, no. 2, Article ID e1000749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. J. Andrew, S. Kao, and K. Strebel, “C-terminal hydrophobic region in human bone marrow stromal cell antigen 2 (BST-2)/tetherin protein functions as second transmembrane motif,” The Journal of Biological Chemistry, vol. 286, no. 46, pp. 39967–39981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Habermann, J. Krijnse-Locker, H. Oberwinkler et al., “CD317/tetherin is enriched in the HIV-1 envelope and downregulated from the plasma membrane upon virus infection,” Journal of Virology, vol. 84, no. 9, pp. 4646–4658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Hammonds, L. Ding, H. Chu et al., “The tetherin/BST-2 coiled-coil ectodomain mediates plasma membrane microdomain localization and restriction of particle release,” Journal of Virology, vol. 86, no. 4, pp. 2259–2272, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Lehmann, S. Rocha, B. Mangeat et al., “Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction,” PLoS Pathogens, vol. 7, no. 12, Article ID e1002456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. L. A. Lopez, S. J. Yang, C. M. Exline, S. Rengarajan, K. G. Haworth, and P. M. Cannon, “Anti-tetherin activities of HIV-1 Vpu and ebola virus glycoprotein do not involve removal of tetherin from lipid rafts,” Journal of Virology, vol. 86, no. 10, pp. 5467–5480, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. J. V. Fritz, N. Tibroni, O. T. Keppler, and O. T. Fackler, “HIV-1 Vpu's lipid raft association is dispensable for counteraction of the particle release restriction imposed by CD317/Tetherin,” Virology, vol. 424, no. 1, pp. 33–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Rollason, V. Korolchuk, C. Hamilton, M. Jepson, and G. Banting, “A CD317/tetherin-RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells,” The Journal of Cell Biology, vol. 184, no. 5, pp. 721–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Katoh and M. Katoh, “Identification and characterization of ARHGAP27 gene in silico,” International Journal of Molecular Medicine, vol. 14, no. 5, pp. 943–947, 2004. View at Google Scholar · View at Scopus
  49. N. Richnau and P. Aspenström, “Rich, a rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1,” The Journal of Biological Chemistry, vol. 276, no. 37, pp. 35060–35070, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Reczek and A. Bretscher, “Identification of EPI64, a TBC/rabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP,” Journal of Cell Biology, vol. 153, no. 1, pp. 191–206, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Songyang, S. E. Shoelson, M. Chaudhuri et al., “SH2 domains recognize specific phosphopeptide sequences,” Cell, vol. 72, no. 5, pp. 767–778, 1993. View at Publisher · View at Google Scholar · View at Scopus
  52. M. W. McNatt, T. Zang, T. Hatziioannou et al., “Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants,” PLoS Pathogens, vol. 5, no. 2, Article ID e1000300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Rong, J. Zhang, J. Lu et al., “The transmembrane domain of BST-2 determines its sensitivity to down-modulation by human immunodeficiency virus type 1 Vpu,” Journal of Virology, vol. 83, no. 15, pp. 7536–7546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. L. Douglas, K. Viswanathan, M. N. McCarroll, J. K. Gustin, K. Früh, and A. V. Moses, “Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/tetherin via a βTrCP-dependent mechanism,” Journal of Virology, vol. 83, no. 16, pp. 7931–7947, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. R. K. Gupta, S. Hué, T. Schaller, E. Verschoor, D. Pillay, and G. J. Towers, “Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Jia, R. Serra-Moreno, W. Neidermyer et al., “Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Dubé, B. B. Roy, P. Guiot-Guillain et al., “Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment,” PLoS Pathogens, vol. 6, no. 4, Article ID e1000856, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Iwabu, H. Fujita, M. Kinomoto et al., “HIV-1 accessory protein Vpu internalizes cell-surface BST-2/tetherin through transmembrane interactions leading to lysosomes,” The Journal of Biological Chemistry, vol. 284, no. 50, pp. 35060–35072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Zhang, S. J. Wilson, W. C. Landford et al., “Nef proteins from simian immunodeficiency viruses are tetherin antagonists,” Cell Host and Microbe, vol. 6, no. 1, pp. 54–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Sauter, M. Schindler, A. Specht et al., “Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains,” Cell Host and Microbe, vol. 6, no. 5, pp. 409–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. R. K. Gupta and G. J. Towers, “A tail of Tetherin: how pandemic HIV-1 conquered the world,” Cell Host and Microbe, vol. 6, no. 5, pp. 393–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Shingai, T. Yoshida, M. A. Martin, and K. Strebel, “Some human immunodeficiency virus type 1 Vpu proteins are able to antagonize macaque BST-2 In Vitro and In vivo: Vpu-Negative simian-human immunodeficiency viruses are attenuated In vivo,” Journal of Virology, vol. 85, no. 19, pp. 9708–9715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Goffinet, I. Allespach, S. Homann et al., “HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor,” Cell Host and Microbe, vol. 5, no. 3, pp. 285–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Mangeat, G. Gers-Huber, M. Lehmann, M. Zufferey, J. Luban, and V. Piguet, “HIV-1 Vpu neutralizes the antiviral factor tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation,” PLoS Pathogens, vol. 5, no. 9, Article ID e1000574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Margottin, S. Benichou, H. Durand et al., “Interaction between the cytoplasmic domains of HIV-1 Vpu and CD4: role of Vpu residues involved in CD4 interaction and in vitro CD4 degradation,” Virology, vol. 223, no. 2, pp. 381–386, 1996. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Goffinet, S. Homann, I. Ambiel et al., “Antagonism of CD317 restriction of human immunodeficiency virus type 1 (HIV-1) particle release and depletion of CD317 are separable activities of HIV-1 Vpu,” Journal of Virology, vol. 84, no. 8, pp. 4089–4094, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Miyagi, A. J. Andrew, S. Kao, and K. Strebe, “Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2868–2873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. R. S. Mitchell, C. Katsura, M. A. Skasko et al., “Vpu antagonizes BST-2-mediated restriction of HIV-1 release via β-TrCP and endo-lysosomal trafficking,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. A. J. Andrew, E. Miyagi, and K. Strebel, “Differential effects of human immunodeficiency virus type 1 Vpu on the stability of BST-2/tetherin,” Journal of Virology, vol. 85, no. 6, pp. 2611–2619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Bour, U. Schubert, K. Peden, and K. Strebel, “The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu-like factor?” Journal of Virology, vol. 70, no. 2, pp. 820–829, 1996. View at Google Scholar · View at Scopus
  71. S. Bour and K. Strebel, “The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses,” Journal of Virology, vol. 70, no. 12, pp. 8285–8300, 1996. View at Google Scholar · View at Scopus
  72. G. D. Ritter, G. Yamshchikov, S. J. Cohen, and M. J. Mulligan, “Human immunodeficiency virus type 2 glycoprotein enhancement of particle budding: role of the cytoplasmic domain,” Journal of Virology, vol. 70, no. 4, pp. 2669–2673, 1996. View at Google Scholar · View at Scopus
  73. A. Le Tortorec and S. J. D. Neil, “Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein,” Journal of Virology, vol. 83, no. 22, pp. 11966–11978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Abada, B. Noble, and P. M. Cannon, “Functional domains within the human immunodeficiency virus type 2 envelope protein required to enhance virus production,” Journal of Virology, vol. 79, no. 6, pp. 3627–3638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Hauser, L. A. Lopez, S. J. Yang et al., “HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment,” Retrovirology, vol. 7, article 51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Noble, P. Abada, J. Nunez-Iglesias, and P. M. Cannon, “Recruitment of the adaptor protein 2 complex by the human immunodeficiency virus type 2 envelope protein is necessary for high levels of virus release,” Journal of Virology, vol. 80, no. 6, pp. 2924–2932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Bour, H. Akari, E. Miyagi, and K. Strebel, “Naturally occurring amino acid substitutions in the HIV-2 ROD envelope glycoprotein regulate its ability to augment viral particle release,” Virology, vol. 309, no. 1, pp. 85–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. R. K. Gupta, P. Mlcochova, A. Pelchen-Matthews et al., “Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20889–20894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Mansouri, K. Viswanathan, J. L. Douglas et al., “Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi's sarcoma-associated herpesvirus,” Journal of Virology, vol. 83, no. 19, pp. 9672–9681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Pardieu, R. Vigan, S. J. Wilson et al., “The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin,” PLoS Pathogens, vol. 6, no. 4, Article ID e1000843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Bates, R. L. Kaletsky, J. R. Francica, and C. Agrawal-Gamse, “Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2886–2891, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. L. A. Lopez, S. J. Yang, H. Hauser et al., “Ebola virus glycoprotein counteracts BST-2/tetherin restriction in a sequence-independent manner that does not require tetherin surface removal,” Journal of Virology, vol. 84, no. 14, pp. 7243–7255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Kühl, C. Banning, A. Marzi et al., “The Ebola virus glycoprotein and HIV-1 VPU employ different strategies to counteract the antiviral factor tetherin,” Journal of Infectious Diseases, vol. 204, supplement 3, pp. S850–S860, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Casartelli, M. Sourisseau, J. Feldmann et al., “Tetherin restricts productive HIV-1 cell-to-cell transmission,” PLoS Pathogens, vol. 6, no. 6, Article ID e1000955, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. B. D. Kuhl, R. D. Sloan, D. A. Donahue, T. Bar-Magen, C. Liang, and M. A. Wainberg, “Tetherin restricts direct cell-to-cell infection of HIV-1,” Retrovirology, vol. 7, article 115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Jolly, N. J. Booth, and S. J. D. Neil, “Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells,” Journal of Virology, vol. 84, no. 23, pp. 12185–12199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. C. M. Coleman, P. Spearman, and L. Wu, “Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef,” Retrovirology, vol. 8, article 26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. R. A. Liberatore and P. D. Bieniasz, “Tetherin is a key effector of the antiretroviral activity of type I interferon in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 44, pp. 18097–18101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. B. S. Barrett, D. S. Smith, S. X. Li, K. Guo, K. J. Hasenkrug, and M. L. Santiago, “A single nucleotide polymorphism in tetherin promotes retrovirus restriction in vivo,” PLoS Pathogens, vol. 8, no. 3, Article ID e1002596, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Swiecki, Y. Wang, S. Gilfillan, D. J. Lenschow, and M. Colonna, “Cutting edge: paradoxical roles of BST2/tetherin in promoting type I IFN response and viral infection,” Journal of Immunology, vol. 188, no. 6, pp. 2488–2492, 2012. View at Publisher · View at Google Scholar · View at Scopus