Table of Contents
Molecular Biology International
Volume 2012 (2012), Article ID 625983, 8 pages
http://dx.doi.org/10.1155/2012/625983
Review Article

The Impact of Macrophage Nucleotide Pools on HIV-1 Reverse Transcription, Viral Replication, and the Development of Novel Antiviral Agents

1Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30022, USA
2Veterans Affairs Medical Center, Atlanta, GA 30033, USA
3Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA

Received 5 March 2012; Accepted 23 April 2012

Academic Editor: Gilda Tachedjian

Copyright © 2012 Christina Gavegnano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Alkhatib, C. Combadiere, C. C. Broder et al., “CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1,” Science, vol. 272, no. 5270, pp. 1955–1958, 1996. View at Google Scholar · View at Scopus
  2. C. Gavegnano and R. F. Schinazi, “Antiretroviral therapy in macrophages: implication for HIV eradication,” Antiviral Chemistry and Chemotherapy, vol. 20, no. 2, pp. 63–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Aquaro, P. Bagnarelli, T. Guenci et al., “Long-term survival and virus production in human primary macrophages infected by human immunodeficiency virus,” Journal of Medical Virology, vol. 68, no. 4, pp. 479–488, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. K. G. Lassen, A. M. Hebbeler, D. Bhattacharyya et al., “A flexible model of HIV-1 latency permitting evaluation of many primary CD4 T-cell reservoirs,” PLoS ONE, vol. 7, no. 1, Article ID e30176, 2012. View at Google Scholar
  5. A. Alexaki, Y. Liu, and B. Wigdahl, “Cellular reservoirs of HIV-1 and their role in viral persistence,” Current HIV Research, vol. 6, no. 5, pp. 388–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Fischer-Smith, C. Bell, S. Croul, M. Lewis, and J. Rappaport, “Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies,” Journal of NeuroVirology, vol. 14, no. 4, pp. 318–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. W. K. Kim, S. Corey, X. Alvarez, and K. Williams, “Monocyte/macrophage traffic in HIV and SIV encephalitis,” Journal of Leukocyte Biology, vol. 74, no. 5, pp. 650–656, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Quayle, C. Xu, K. H. Mayer, and D. J. Anderson, “T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen,” Journal of Infectious Diseases, vol. 176, no. 4, pp. 960–968, 1997. View at Google Scholar · View at Scopus
  9. C. N. B. Shikuma, B. Shiramizu, C. Y. Liang et al., “Antiretroviral Monocyte Efficacy Score Linked to Cognitive Impairment in HIV,” Antiviral Therapy. In press.
  10. B. Shiramizu, J. Ananworanich, T. Chalermchai et al., “Failure to clear intra-monocyte HIV infection linked to persistent neuropsychological testing impairment after first-line combined antiretroviral therapy,” Journal For Neurovirology. In press.
  11. E. Balestra, C. F. Perno, S. Aquaro et al., “Macrophages: a crucial reservoir for human immunodeficiency virus in the body,” Journal of Biological Regulators and Homeostatic Agents, vol. 15, no. 3, pp. 272–276, 2001. View at Google Scholar · View at Scopus
  12. C. Deleage, M. Moreau, N. Rioux-Leclercq et al., “Human immunodeficiency virus infects human seminal vesicles in vitro and in vivo,” The American Journal of Pathology, vol. 179, pp. 2397–2408, 2011. View at Google Scholar
  13. T. Zhu, D. Muthui, S. Holte et al., “Evidence for human immunodeficiency virus type 1 replication in vivo in CD14+ monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy,” Journal of Virology, vol. 76, no. 2, pp. 707–716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Sonza, H. P. Mutimer, R. Oelrichs et al., “Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy,” AIDS, vol. 15, no. 1, pp. 17–22, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. J. Ellery, E. Tippett, Y. L. Chiu et al., “The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo,” Journal of Immunology, vol. 178, no. 10, pp. 6581–6589, 2007. View at Google Scholar · View at Scopus
  16. A. M. Spivak, M. Salgado, S. A. Rabi et al., “Circulating monocytes are not a major reservoir of HIV-1 in elite suppressors,” Journal of Virology, vol. 85, pp. 10399–10403, 2011. View at Google Scholar
  17. A. M. Ortiz, N. R. Klatt, B. Li et al., “Depletion of CD4 T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques,” The Journal of Clinical Investigation, vol. 121, pp. 4433–4445, 2011. View at Google Scholar
  18. E. Fromentin, C. Gavegnano, A. Obikhod, and R. F. Schinazi, “Simultaneous quantification of intracellular natural and antiretroviral nucleosides and nucleotides by liquid chromatography-tandem mass spectrometry,” Analytical Chemistry, vol. 82, no. 5, pp. 1982–1989, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. M. Kennedy, C. Gavegnano, L. Nguyen et al., “Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages,” Journal of Biological Chemistry, vol. 285, no. 50, pp. 39380–39391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Lahouassa, W. Daddacha, H. Hofmann et al., “SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates,” Nature Immunology, vol. 13, pp. 223–228, 2012. View at Google Scholar
  21. V. K. Jamburuthugoda, P. Chugh, and B. Kim, “Modification of human immunodeficiency virus type 1 reverse transcriptase to target cells with elevated cellular dNTP concentrations,” Journal of Biological Chemistry, vol. 281, no. 19, pp. 13388–13395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Lahouassa, W. Daddacha, H. Hofmann et al., “SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates,” Nature Immunology, vol. 13, pp. 223–228, 2012. View at Google Scholar
  23. P. F. Lewis and M. Emerman, “Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus,” Journal of Virology, vol. 68, no. 1, pp. 510–516, 1994. View at Google Scholar · View at Scopus
  24. T. L. Diamond, M. Roshal, V. K. Jamburuthugoda et al., “Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 51545–51553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Kennedy, W. Daddacha, R. Slater et al., “Frequent incorporation of rNTPs and non-canonical dUTP by HIV-1 reverse transcriptase in primary human macrophages,” in Proceedings of the 6th International AIDS Society Conference on HIV-1 Pathogenesis, Treatment, and Prevention, Rome, Italy, July 2011.
  26. A. M. Woodside and F. P. Guengerich, “Effect of the O6 substituent on misincorporation kinetics catalyzed by DNA polymerases at O6-methylguanine and O6-benzylguanine,” Biochemistry, vol. 41, no. 3, pp. 1027–1038, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. L. L. Furge and F. P. Guengerich, “Analysis of nucleotide insertion and extension at 8-oxo-7,8- dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics,” Biochemistry, vol. 36, no. 21, pp. 6475–6487, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. G. I. Rice, J. Bond, A. Asipu et al., “Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response,” Nature Genetics, vol. 41, no. 7, pp. 829–832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. E. M. Kennedy, W. Daddacha, R. Slater et al., “Abundant non-canonical dUTP found in primary human macrophages drives its frequent incorporation by HIV-1 reverse transcriptase,” Journal of Biological Chemistry, vol. 286, no. 28, pp. 25047–25055, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Hrecka, C. Hao, M. Gierszewska et al., “Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein,” Nature, vol. 474, no. 7353, pp. 658–661, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Laguette, B. Sobhian, N. Casartelli et al., “SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx,” Nature, vol. 474, no. 7353, pp. 654–657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. T. W. Traut, “Physiological concentrations of purines and pyrimidines,” Molecular and Cellular Biochemistry, vol. 140, no. 1, pp. 1–22, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Aquaro and C. F. Perno, “Assessing the relative efficacy of antiretroviral activity of different drugs on macrophages,” Methods in Molecular Biology, vol. 304, pp. 445–453, 2005. View at Google Scholar · View at Scopus
  34. C. F. Perno, R. Yarchoan, J. Balzarini et al., “Different pattern of activity of inhibitors of the human immunodeficiency virus in lymphocytes and monocyte/macrophages,” Antiviral Research, vol. 17, no. 4, pp. 289–304, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Ji, J. S. Hoffmann, and L. Loeb, “Mutagenicity and pausing of HIV reverse transcriptase during HIV plus-strand DNA synthesis,” Nucleic Acids Research, vol. 22, no. 1, pp. 47–52, 1994. View at Google Scholar · View at Scopus
  36. C. Liang, L. Rong, M. Götte et al., “Mechanistic studies of early pausing events during initiation of HIV-1 reverse transcription,” Journal of Biological Chemistry, vol. 273, no. 33, pp. 21309–21315, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Gavegnano, E. Fromentin, and R. F. Schinazi, “Nucleoside analogue triphosphate levels are significantly lower in primary human macrophages than lymphocytes,” Global Antiviral Journal. In press, IHL Press, vol 6, supplement 2, page 18, abstract 32, 2009.
  38. L. Jones, D. Mcdonald, and D. H. Canaday, “Rapid MHC-II antigen presentation of HIV type 1 by human dendritic cells,” AIDS Research and Human Retroviruses, vol. 23, no. 6, pp. 812–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. D. Kraft-Terry, I. L. Engebretsen, D. K. Bastola, H. S. Fox, P. Ciborowski, and H. E. Gendelman, “Pulsed stable isotope labeling of amino acids in cell culture uncovers the dynamic interactions between HIV-1 and the monocyte-derived macrophage,” Journal of Proteome Research, vol. 10, no. 6, pp. 2852–2862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Becker, “The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers—a review and hypothesis,” Virus Genes, vol. 28, no. 1, pp. 5–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Kedzierska, S. M. Crowe, S. Turville, and A. L. Cunningham, “The influence of cytokines, chemokines and their receptors on HIV-1 replication in monocytes and macrophages,” Reviews in Medical Virology, vol. 13, no. 1, pp. 39–56, 2003. View at Publisher · View at Google Scholar · View at Scopus