Table of Contents
Molecular Biology International
Volume 2012, Article ID 682850, 11 pages
http://dx.doi.org/10.1155/2012/682850
Review Article

Retroviral Env Glycoprotein Trafficking and Incorporation into Virions

AIDS Research Center, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan

Received 29 February 2012; Revised 8 May 2012; Accepted 31 May 2012

Academic Editor: Abdul A. Waheed

Copyright © 2012 Tsutomu Murakami. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. D. Bieniasz, “The cell biology of HIV-1 virion genesis,” Cell Host and Microbe, vol. 5, no. 6, pp. 550–558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. E. O. Freed, “HIV-1 Gag proteins: diverse functions in the virus life cycle,” Virology, vol. 251, no. 1, pp. 1–15, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Swanstrom and J. W. Wills, Synthesis, Assembly, and Processing of Viral Proteins, 1997.
  4. A. K. Dalton, D. Ako-Adjei, P. S. Murray, D. Murray, and V. M. Vogt, “Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain,” Journal of Virology, vol. 81, no. 12, pp. 6434–6445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. K. Dalton, P. S. Murray, D. Murray, and V. M. Vogt, “Biochemical characterization of Rous sarcoma virus MA protein interaction with membranes,” Journal of Virology, vol. 79, no. 10, pp. 6227–6238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ono, S. D. Ablan, S. J. Lockett, K. Nagashima, and E. O. Freed, “Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14889–14894, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. S. Saad, J. Miller, J. Tai, A. Kim, R. H. Ghanam, and M. F. Summers, “Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11364–11369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Chan, P. D. Uchil, J. Jin et al., “Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides,” Journal of Virology, vol. 82, no. 22, pp. 11228–11238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Stansell, R. Apkarian, S. Haubova, W. E. Diehl, E. M. Tytler, and E. Hunter, “Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions,” Journal of Virology, vol. 81, no. 17, pp. 8977–8988, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Chan, R. A. Dick, and V. M. Vogt, “Rous sarcoma virus gag has no specific requirement for phosphatidylinositol-(4, 5)-bisphosphate for plasma membrane association in vivo or for liposome interaction in vitro,” Journal of Virology, vol. 85, pp. 10851–10860, 2011. View at Google Scholar
  11. J. Inlora, V. Chukkapalli, D. Derse, and A. Ono, “Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 gag,” Journal of Virology, vol. 85, no. 8, pp. 3802–3810, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. de Marco, N. E. Davey, P. Ulbrich et al., “Conserved and variable features of Gag structure and arrangement in immature retrovirus particles,” Journal of Virology, vol. 84, no. 22, pp. 11729–11736, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. B. Mortuza, L. F. Haire, A. Stevens, S. J. Smerdon, J. P. Stoye, and I. A. Taylor, “High-resolution structure of a retroviral capsid hexameric amino-terminal domain,” Nature, vol. 431, pp. 481–485, 2004. View at Google Scholar
  14. O. Pornillos, B. K. Ganser-Pornillos, B. N. Kelly et al., “X-ray structures of the hexameric building block of the HIV capsid,” Cell, vol. 137, no. 7, pp. 1282–1292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Finzi, A. Orthwein, J. Mercier, and E. A. Cohen, “Productive human immunodeficiency virus type 1 assembly takes place at the plasma membrane,” Journal of Virology, vol. 81, no. 14, pp. 7476–7490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Ivanchenko, W. J. Godinez, M. Lampe et al., “Dynamics of HIV-1 assembly and release,” PLoS Pathogens, vol. 5, no. 11, Article ID e1000652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Jouvenet, P. D. Bieniasz, and S. M. Simon, “Imaging the biogenesis of individual HIV-1 virions in live cells,” Nature, vol. 454, no. 7201, pp. 236–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ono, “Relationships between plasma membrane microdomains and HIV-1 assembly,” Biology of the Cell, vol. 102, no. 6, pp. 335–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Joshi, S. D. Ablan, F. Soheilian, K. Nagashima, and E. O. Freed, “Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment,” Journal of Virology, vol. 83, no. 11, pp. 5375–5387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. E. Bennett, K. Narayan, D. Shi et al., “Ion-abrasion scanning electron microscopy reveals surface-connected tubular conduits in HIV-infected macrophages,” PLoS Pathogens, vol. 5, no. 9, Article ID e1000591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Deneka, A. Pelchen-Matthews, R. Byland, E. Ruiz-Mateos, and M. Marsh, “In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53,” Journal of Cell Biology, vol. 177, no. 2, pp. 329–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Welsch, O. T. Keppler, A. Habermann, I. Allespach, J. Krijnse-Locker, and H. G. Kräusslich, “HIV-1 buds predominantly at the plasma membrane of primary human macrophages,” PLoS Pathogens, vol. 3, no. 3, Article ID e36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Checkley, B. G. Luttge, and E. O. Freed, “2011 HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation,” Journal of Molecular Biology, vol. 410, pp. 582–608.
  24. E. O. Freed and M. A. Martin, “The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection,” Journal of Biological Chemistry, vol. 270, no. 41, pp. 23883–23886, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Hunter and R. Swanstrom, “Retrovirus envelope glycoproteins,” Current Topics in Microbiology and Immunology, vol. 157, pp. 187–253, 1990. View at Google Scholar · View at Scopus
  26. H. B. Bernstein, S. P. Tucker, E. Hunter, J. S. Schutzbach, and R. W. Compans, “Human immunodeficiency virus type 1 envelope glycoprotein is modified by O-linked oligosaccharides,” Journal of Virology, vol. 68, no. 1, pp. 463–468, 1994. View at Google Scholar · View at Scopus
  27. C. K. Leonard, M. W. Spellman, L. Riddle, R. J. Harris, J. N. Thomas, and T. J. Gregory, “Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells,” Journal of Biological Chemistry, vol. 265, no. 18, pp. 10373–10382, 1990. View at Google Scholar · View at Scopus
  28. P. W. Berman, W. M. Nunes, and O. K. Haffar, “Expression of membrane-associated and secreted variants of gp160 of human immunodeficiency virus type 1 in vitro and in continuous cell lines,” Journal of Virology, vol. 62, no. 9, pp. 3135–3142, 1988. View at Google Scholar · View at Scopus
  29. O. K. Haffar, D. J. Dowbenko, and P. W. Berman, “Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes,” Journal of Cell Biology, vol. 107, no. 5, pp. 1677–1687, 1988. View at Google Scholar · View at Scopus
  30. R. J. Center, P. Schuck, R. D. Leapman et al., “Oligomeric structure of virion-associated and soluble forms of the simian immunodeficiency virus envelope protein in the prefusion activated conformation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 14877–14882, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Förster, O. Medalia, N. Zauberman, W. Baumeister, and D. Fass, “Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 13, pp. 4729–4734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Wilk, F. de Haas, A. Wagner et al., “The intact retroviral Env glycoprotein of human foamy virus is a trimer,” Journal of Virology, vol. 74, no. 6, pp. 2885–2887, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Zhu, E. Chertova, J. W. Bess Jr. et al., “Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15812–15817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Fujita, S. Omura, and J. Silver, “Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by proteasome inhibitors,” Journal of General Virology, vol. 78, no. 3, pp. 619–625, 1997. View at Google Scholar · View at Scopus
  35. F. Margottin, S. P. Bour, H. Durand et al., “A novel human WD protein, h-βTrCP, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif,” Molecular Cell, vol. 1, no. 4, pp. 565–574, 1998. View at Google Scholar · View at Scopus
  36. U. Schubert, L. C. Antón, I. Bačík et al., “CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin- conjugating pathway,” Journal of Virology, vol. 72, no. 3, pp. 2280–2288, 1998. View at Google Scholar · View at Scopus
  37. R. M. Bedgood and M. R. Stallcup, “A novel intermediate in processing of murine leukemia virus envelope glycoproteins. Proteolytic cleavage in the late Golgi region,” Journal of Biological Chemistry, vol. 267, no. 10, pp. 7060–7065, 1992. View at Google Scholar · View at Scopus
  38. E. O. Freed, D. J. Myers, and R. Risser, “Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160,” Journal of Virology, vol. 63, no. 11, pp. 4670–4675, 1989. View at Google Scholar · View at Scopus
  39. E. O. Freed and R. Risser, “The role of envelope glycoprotein processing in murine leukemia virus infection,” Journal of Virology, vol. 61, no. 9, pp. 2852–2856, 1987. View at Google Scholar · View at Scopus
  40. V. Geiselhart, P. Bastone, T. Kempf, M. Schnölzer, and M. Löchelt, “Furin-mediated cleavage of the feline foamy virus Env leader protein,” Journal of Virology, vol. 78, no. 24, pp. 13573–13581, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Hallenberger, V. Bosch, H. Angliker, E. Shaw, H. D. Klenk, and W. Garten, “Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160,” Nature, vol. 360, no. 6402, pp. 358–361, 1992. View at Publisher · View at Google Scholar · View at Scopus
  42. J. M. McCune, L. B. Rabin, M. B. Feinberg et al., “Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus,” Cell, vol. 53, no. 1, pp. 55–67, 1988. View at Google Scholar · View at Scopus
  43. B. S. Stein and E. G. Engleman, “Intracellular processing of the gp160 HIV-1 envelope precursor. Endoproteolytic cleavage occurs in a cis or medial compartment of the Golgi complex,” Journal of Biological Chemistry, vol. 265, no. 5, pp. 2640–2649, 1990. View at Google Scholar · View at Scopus
  44. V. Bosch and M. Pawlita, “Mutational analysis of the human immunodeficiency virus type 1 env gene product proteolytic cleavage site,” Journal of Virology, vol. 64, no. 5, pp. 2337–2344, 1990. View at Google Scholar · View at Scopus
  45. J. W. Dubay, S. R. Dubay, H. J. Shin, and E. Hunter, “Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein: requirement of precursor cleavage for glycoprotein incorporation,” Journal of Virology, vol. 69, no. 8, pp. 4675–4682, 1995. View at Google Scholar · View at Scopus
  46. H. G. Guo, F. M. Veronese, E. Tschachler et al., “Characterization of an HIV-1 point mutant blocked in envelope glycoprotein cleavage,” Virology, vol. 174, no. 1, pp. 217–224, 1990. View at Publisher · View at Google Scholar · View at Scopus
  47. N. G. Famulari and K. Jelalian, “Cell surface expression of the env gene polyprotein of dual-tropic mink cell focus-forming murine leukemia virus,” Journal of Virology, vol. 30, no. 3, pp. 720–728, 1979. View at Google Scholar · View at Scopus
  48. C. Granowitz, J. Colicelli, and S. P. Goff, “Analysis of mutations in the envelope gene of Moloney murine leukemia virus: separation of infectivity from superinfection resistance,” Virology, vol. 183, no. 2, pp. 545–554, 1991. View at Publisher · View at Google Scholar · View at Scopus
  49. C. A. Machida and D. Kabat, “Role of partial proteolysis in processing murine leukemia virus membrane envelope glycoproteins to the cell surface. A viral mutant with uncleaved glycoprotein,” Journal of Biological Chemistry, vol. 257, no. 23, pp. 14018–14022, 1982. View at Google Scholar · View at Scopus
  50. T. Zavorotinskaya and L. M. Albritton, “Failure to cleave murine leukemia virus envelope protein does not preclude its incorporation in virions and productive virus-receptor interaction,” Journal of Virology, vol. 73, no. 7, pp. 5621–5629, 1999. View at Google Scholar · View at Scopus
  51. J. Dong, J. W. Dubay, L. G. Perez, and E. Hunter, “Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein define a requirement for dibasic residues for intracellular cleavage,” Journal of Virology, vol. 66, no. 2, pp. 865–874, 1992. View at Google Scholar · View at Scopus
  52. L. G. Perez and E. Hunter, “Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein that block processing to gp85 and gp37,” Journal of Virology, vol. 61, no. 5, pp. 1609–1614, 1987. View at Google Scholar · View at Scopus
  53. L. J. Goodman, S. R. Kain, and G. L. Firestone, “Trafficking of wild-type and an endoproteolytic-site mutant of the mouse mammary tumor virus glycoprotein,” Journal of Biological Chemistry, vol. 268, no. 4, pp. 2329–2336, 1993. View at Google Scholar · View at Scopus
  54. S. Apte and D. A. Sanders, “Effects of retroviral envelope-protein cleavage upon trafficking, incorporation, and membrane fusion,” Virology, vol. 405, no. 1, pp. 214–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. P. Grange, V. Blot, L. Delamarre et al., “Identification of two intracellular mechanisms leading to reduced expression of oncoretrovirus envelope glycoproteins at the cell surface,” Journal of Virology, vol. 74, no. 24, pp. 11734–11743, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Ilinskaya, G. Heidecker, and D. Derse, “Opposing effects of a tyrosine-based sorting motif and a PDZ-binding motif regulate human T-lymphotropic virus type 1 envelope trafficking,” Journal of Virology, vol. 84, no. 14, pp. 6995–7004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Sandrin, D. Muriaux, J. L. Darlix, and F. L. Cosset, “Intracellular trafficking of Gag and Env proteins and their interactions modulate pseudotyping of retroviruses,” Journal of Virology, vol. 78, no. 13, pp. 7153–7164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Berlioz-Torrent, B. L. Shacklett, L. Erdtmann et al., “Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adaptor complexes modulate intracellular and cell surface expression of envelope glycoproteins,” Journal of Virology, vol. 73, no. 2, pp. 1350–1361, 1999. View at Google Scholar · View at Scopus
  59. S. Wyss, C. Berlioz-Torrent, M. Boge et al., “The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adapter,” Journal of Virology, vol. 75, no. 6, pp. 2982–2992, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. L. R. Miranda, B. C. Schaefer, A. Kupfer, Z. Hu, and A. Franzusoff, “Cell surface expression of the HIV-1 envelope glycoproteins is directed from intracellular CTLA-4-containing regulated secretory granules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8031–8036, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Boge, S. Wyss, J. S. Bonifacino, and M. Thali, “A membrane-proximal tyrosine-based signal mediates internalization of the HIV-1 envelope glycoprotein via interaction with the AP-2 clathrin adaptor,” Journal of Biological Chemistry, vol. 273, no. 25, pp. 15773–15778, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Ohno, R. C. Aguilar, M. C. Fournier, S. Hennecke, P. Cosson, and J. S. Bonifacino, “Interaction of endocytic signals from the HIV-1 envelope glycoprotein complex with members of the adaptor medium chain family,” Virology, vol. 238, no. 2, pp. 305–315, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. M. A. Egan, L. M. Carruth, J. F. Rowell, X. Yu, and R. F. Siliciano, “Human immunodeficiency virus type 1 envelope protein endocytosis mediated by a highly conserved intrinsic internalization signal in the cytoplasmic domain of gp41 is suppressed in the presence of the Pr55(gag) precursor protein,” Journal of Virology, vol. 70, no. 10, pp. 6547–6556, 1996. View at Google Scholar · View at Scopus
  64. J. F. Rowell, P. E. Stanhope, and R. F. Siliciano, “Endocytosis of endogenously synthesized HIV-1 envelope protein: mechanism and role in processing for association with class II MHC,” Journal of Immunology, vol. 155, no. 1, pp. 473–488, 1995. View at Google Scholar · View at Scopus
  65. V. Blot, S. Lopez-Vergès, M. Breton, C. Pique, C. Berlioz-Torrent, and M. P. Grange, “The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking,” Retrovirology, vol. 3, article 62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Bouard, V. Sandrin, B. Boson et al., “An acidic cluster of the cytoplasmic tail of the RD114 virus glycoprotein controls assembly of retroviral envelopes,” Traffic, vol. 8, no. 7, pp. 835–847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. F. L. Cosset, Y. Takeuchi, J. L. Battini, R. A. Weiss, and M. K. L. Collins, “High-titer packaging cells producing recombinant retroviruses resistant to human serum,” Journal of Virology, vol. 69, no. 12, pp. 7430–7436, 1995. View at Google Scholar · View at Scopus
  68. V. Sandrin, B. Boson, P. Salmon et al., “Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates,” Blood, vol. 100, no. 3, pp. 823–832, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Takeuchi, F. L. C. Cosset, P. J. Lachmann, H. Okada, R. A. Weiss, and M. K. L. Collins, “Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell,” Journal of Virology, vol. 68, no. 12, pp. 8001–8007, 1994. View at Google Scholar · View at Scopus
  70. M. C. Johnson, “Mechanisms for env glycoprotein acquisition by retroviruses,” AIDS Research and Human Retroviruses, vol. 27, no. 3, pp. 239–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Bartosch, J. Dubuisson, and F. L. Cosset, “Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes,” Journal of Experimental Medicine, vol. 197, no. 5, pp. 633–642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Christodoulopoulos and P. M. Cannon, “Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors,” Journal of Virology, vol. 75, no. 9, pp. 4129–4138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Hofmann, K. Hattermann, A. Marzi et al., “S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients,” Journal of Virology, vol. 78, no. 12, pp. 6134–6142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. G. P. Kobinger, S. Deng, J. P. Louboutin et al., “Transduction of human islets with pseudotyped lentiviral vectors,” Human Gene Therapy, vol. 15, no. 2, pp. 211–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. G. P. Kobinger, D. J. Weiner, Q. C. Yu, and J. M. Wilson, “Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo,” Nature Biotechnology, vol. 19, no. 3, pp. 225–230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Kumar, B. P. Bradow, and J. Zimmerberg, “Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64,” Human Gene Therapy, vol. 14, no. 1, pp. 67–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. N. R. Landau, K. A. Page, and D. R. Littman, “Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range,” Journal of Virology, vol. 65, no. 1, pp. 162–169, 1991. View at Google Scholar · View at Scopus
  78. B. C. Lewis, N. Chinnasamy, R. A. Morgan, and H. E. Varmus, “Development of an avian leukosis-sarcoma virus subgroup a pseudotyped lentiviral vector,” Journal of Virology, vol. 75, no. 19, pp. 9339–9344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. S. L. Liu, C. L. Halbert, and A. D. Miller, “Jaagsiekte sheep retrovirus envelope efficiently pseudotypes human immunodeficiency virus type 1-based lentiviral vectors,” Journal of Virology, vol. 78, no. 5, pp. 2642–2647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Mochizuki, J. P. Schwartz, K. Tanaka, R. O. Brady, and J. Reiser, “High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells,” Journal of Virology, vol. 72, no. 11, pp. 8873–8883, 1998. View at Google Scholar · View at Scopus
  81. M. Morizono, G. Bristol, Y. M. Xie, S. K. P. Kung, and I. S. Y. Chen, “Antibody-directed targeting of retroviral vectors via cell surface antigens,” Journal of Virology, vol. 75, no. 17, pp. 8016–8020, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Naldini, U. Blömer, P. Gallay et al., “In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector,” Science, vol. 272, no. 5259, pp. 263–267, 1996. View at Google Scholar · View at Scopus
  83. J. Reiser, G. Harmison, S. Kluepfel-Stahl, R. O. Brady, S. Karlsson, and M. Schubert, “Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 26, pp. 15266–15271, 1996. View at Google Scholar · View at Scopus
  84. U. Zeilfelder and V. Bosch, “Properties of wild-type, C-terminally truncated, and chimeric maedi-visna virus glycoprotein and putative pseudotyping of retroviral vector particles,” Journal of Virology, vol. 75, no. 1, pp. 548–555, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Chertova, O. Chertov, L. V. Coren et al., “Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages,” Journal of Virology, vol. 80, no. 18, pp. 9039–9052, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Hammarstedt and H. Garoff, “Passive and active inclusion of host proteins in human immunodeficiency virus type 1 Gag particles during budding at the plasma membrane,” Journal of Virology, vol. 78, no. 11, pp. 5686–5697, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Hammarstedt, K. Wallengren, K. W. Pedersen, N. Roos, and H. Garoff, “Minimal exclusion of plasma membrane proteins during retroviral envelope formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7527–7532, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. L. O. Arthur, J. W. Bess Jr., R. C. Sowder II et al., “Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines,” Science, vol. 258, no. 5090, pp. 1935–1938, 1992. View at Google Scholar · View at Scopus
  89. D. E. Ott, “Cellular proteins detected in HIV-1,” Reviews of Medical Virology, vol. 18, pp. 159–175, 2008. View at Google Scholar
  90. S. S. L. Chen, A. A. Ferrante, and E. F. Terwilliger, “Characterization of an envelope mutant of HIV-1 that interferes with viral infectivity,” Virology, vol. 226, no. 2, pp. 260–268, 1996. View at Publisher · View at Google Scholar · View at Scopus
  91. E. O. Freed and M. A. Martin, “Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions,” Journal of Virology, vol. 70, no. 1, pp. 341–351, 1996. View at Google Scholar · View at Scopus
  92. E. O. Freed and M. A. Martin, “Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix,” Journal of Virology, vol. 69, no. 3, pp. 1984–1989, 1995. View at Google Scholar · View at Scopus
  93. T. Murakami and E. O. Freed, “The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 1, pp. 343–348, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Wilk, T. Pfeiffer, and V. Bosch, “Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product,” Virology, vol. 189, no. 1, pp. 167–177, 1992. View at Publisher · View at Google Scholar · View at Scopus
  95. J. W. Dubay, S. J. Roberts, B. H. Hahn, and E. Hunter, “Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity,” Journal of Virology, vol. 66, no. 11, pp. 6616–6625, 1992. View at Google Scholar · View at Scopus
  96. D. H. Gabuzda, A. Lever, E. Terwilliger, and J. Sodroski, “Effects of deletions in the cytoplasmic domain on biological functions of human immunodeficiency virus type 1 envelope glycoproteins,” Journal of Virology, vol. 66, no. 6, pp. 3306–3315, 1992. View at Google Scholar · View at Scopus
  97. Y. Iwatani, T. Ueno, A. Nishimura et al., “Modification of virus infectivity by cytoplasmic tail of HIV-1 TM protein,” Virus Research, vol. 74, no. 1-2, pp. 75–87, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Murakami and E. O. Freed, “Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and α-helix 2 of the gp41 cytoplasmic tail,” Journal of Virology, vol. 74, no. 8, pp. 3548–3554, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. S. C. Piller, J. W. Dubay, C. A. Derdeyn, and E. Hunter, “Mutational analysis of conserved domains within the cytoplasmic tail of gp41 from human immunodeficiency virus type 1: effects on glycoprotein incorporation and infectivity,” Journal of Virology, vol. 74, no. 24, pp. 11717–11723, 2000. View at Publisher · View at Google Scholar · View at Scopus
  100. X. Yu, X. Yuan, M. F. McLane, T. H. Lee, and M. Essex, “Mutations in the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein impair the incorporation of Env proteins into mature virions,” Journal of Virology, vol. 67, no. 1, pp. 213–221, 1993. View at Google Scholar · View at Scopus
  101. T. Dorfman, F. Mammano, W. A. Haseltine, and H. G. Gottlinger, “Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein,” Journal of Virology, vol. 68, no. 3, pp. 1689–1696, 1994. View at Google Scholar · View at Scopus
  102. X. Yu, X. Yuan, Z. Matsuda, T. H. Lee, and M. Essex, “The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions,” Journal of Virology, vol. 66, no. 8, pp. 4966–4971, 1992. View at Google Scholar · View at Scopus
  103. R. Lodge, H. Gottlinger, D. Gabuzda, E. A. Cohen, and G. Lemay, “The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells,” Journal of Virology, vol. 68, no. 8, pp. 4857–4861, 1994. View at Google Scholar · View at Scopus
  104. R. Lodge, J. P. Lalonde, G. Lemay, and E. A. Cohen, “The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells,” The EMBO Journal, vol. 16, no. 4, pp. 695–705, 1997. View at Publisher · View at Google Scholar · View at Scopus
  105. R. J. Owens and R. W. Compans, “Expression of the human immunodeficiency virus envelope glycoprotein is restricted to basolateral surfaces of polarized epithelial cells,” Journal of Virology, vol. 63, no. 2, pp. 978–982, 1989. View at Google Scholar · View at Scopus
  106. R. J. Owens, J. W. Dubay, E. Hunter, and R. W. Compans, “Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3987–3991, 1991. View at Google Scholar · View at Scopus
  107. J. Deschambeault, J. P. Lalonde, G. Cervantes-Acosta, R. Lodge, E. A. Cohen, and G. Lemay, “Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission,” Journal of Virology, vol. 73, no. 6, pp. 5010–5017, 1999. View at Google Scholar · View at Scopus
  108. R. Lodge, L. Delamarre, J. P. Lalonde et al., “Two distinct oncornaviruses harbor an intracytoplasmic tyrosine-based basolateral targeting signal in their viral envelope glycoprotein,” Journal of Virology, vol. 71, no. 7, pp. 5696–5702, 1997. View at Google Scholar · View at Scopus
  109. K. Weclewicz, M. Ekström, K. Kristensson, and H. Garoff, “Specific interactions between retrovirus Env and Gag proteins in rat neurons,” Journal of Virology, vol. 72, no. 4, pp. 2832–2845, 1998. View at Google Scholar · View at Scopus
  110. T. M. Lucas, T. D. Lyddon, S. A. Grosse, and M. C. Johnson, “Two distinct mechanisms regulate recruitment of murine leukemia virus envelope protein to retroviral assembly sites,” Virology, vol. 405, no. 2, pp. 548–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. R. L. Jorgenson, V. M. Vogt, and M. C. Johnson, “Foreign glycoproteins can be actively recruited to virus assembly sites during pseudotyping,” Journal of Virology, vol. 83, no. 9, pp. 4060–4067, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Cosson, “Direct interaction between the envelope and matrix proteins of HIV-1,” The EMBO Journal, vol. 15, no. 21, pp. 5783–5788, 1996. View at Google Scholar · View at Scopus
  113. J. M. Manrique, J. L. Affranchino, and S. A. González, “In vitro binding of simian immunodeficiency virus matrix protein to the cytoplasmic domain of the envelope glycoprotein,” Virology, vol. 374, no. 2, pp. 273–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. C. Hourioux, D. Brand, P. Y. Sizaret et al., “Identification of the glycoprotein 41(TM) cytoplasmic tail domains of human immunodeficiency virus type 1 that interact with Pr55(Gag) particles,” AIDS Research and Human Retroviruses, vol. 16, no. 12, pp. 1141–1147, 2000. View at Publisher · View at Google Scholar · View at Scopus
  115. M. R. Davis, J. Jiang, J. Zhou, E. O. Freed, and C. Aiken, “A mutation in the human immunodeficiency virus type 1 Gag protein destabilizes the interaction of the envelope protein subunits gp120 and gp41,” Journal of Virology, vol. 80, no. 5, pp. 2405–2417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Jiang and C. Aiken, “Maturation-dependent human immunodeficiency virus type 1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail,” Journal of Virology, vol. 81, no. 18, pp. 9999–10008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Blot, K. Janvier, S. Le Panse, R. Benarous, and C. Berlioz-Torrent, “Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for Env incorporation into virions and infectivity,” Journal of Virology, vol. 77, no. 12, pp. 6931–6945, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. S. Lopez-Vergès, G. Camus, G. Blot, R. Beauvoir, R. Benarous, and C. Berlioz-Torrent, “Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 40, pp. 14947–14952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Bauby, S. Lopez-Vergès, G. Hoeffel et al., “TIP47 is required for the production of infectious HIV-1 particles from primary macrophages,” Traffic, vol. 11, no. 4, pp. 455–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. V. Blot, L. Delamarre, F. Perugi et al., “Human Dlg protein binds to the envelope glycoproteins of human T-cell leukemia virus type 1 and regulates envelope mediated cell-cell fusion in T lymphocytes,” Journal of Cell Science, vol. 117, no. 17, pp. 3983–3993, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. F. Perugi, D. Muriaux, B. C. Ramirez et al., “Human discs large is a new negative regulator of human immunodeficiency virus-1 infectivity,” Molecular Biology of the Cell, vol. 20, no. 1, pp. 498–508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. D. T. Evans, K. C. Tillman, and R. C. Desrosiers, “Envelope glycoprotein cytoplasmic domains from diverse lentiviruses interact with the prenylated rab acceptor,” Journal of Virology, vol. 76, no. 1, pp. 327–337, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. P. Blancou, D. T. Evans, and R. C. Desrosiers, “PRA1 co-localizes with envelope but does not influence primate lentivirus production, infectivity or envelope incorporation,” Journal of General Virology, vol. 86, no. 6, pp. 1785–1790, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. V. Emerson, D. Holtkotte, T. Pfeiffer et al., “Identification of the cellular prohibitin 1/prohibitin 2 heterodimer as an interaction partner of the C-terminal cytoplasmic domain of the HIV-1 glycoprotein,” Journal of Virology, vol. 84, no. 3, pp. 1355–1365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Merkwirth and T. Langer, “Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis,” Biochimica et Biophysica Acta, vol. 1793, no. 1, pp. 27–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Mishra, S. R. Ande, and B. L. G. Nyomba, “The role of prohibitin in cell signaling,” FEBS Journal, vol. 277, no. 19, pp. 3937–3946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. G. Blot, S. Lopez-Vergès, C. Treand et al., “Luman, a new partner of HIV-1 TMgp41, interferes with tat-mediated transcription of the HIV-1 LTR,” Journal of Molecular Biology, vol. 364, no. 5, pp. 1034–1047, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. H. Zhang, L. Wang, S. Kao et al., “Functional interaction between the cytoplasmic leucine-zipper domain of HIV-1 gp41 and p115-RhoGEF,” Current Biology, vol. 9, no. 21, pp. 1271–1274, 1999. View at Google Scholar · View at Scopus
  129. M. A. Miller, T. A. Mietzner, M. W. Cloyd, W. G. Robey, and R. C. Montelaro, “Identification of a calmodulin-binding and inhibitory peptide domain in the HIV-1 transmembrane glycoprotein,” AIDS Research and Human Retroviruses, vol. 9, no. 11, pp. 1057–1066, 1993. View at Google Scholar · View at Scopus
  130. S. K. Srinivas, R. V. Srinivas, G. M. Anantharamaiah, R. W. Compans, and J. P. Segrest, “Cytosolic domain of the human immunodeficiency virus envelope glycoproteins binds to calmodulin and inhibits calmodulin-regulated proteins,” Journal of Biological Chemistry, vol. 268, no. 30, pp. 22895–22899, 1993. View at Google Scholar · View at Scopus
  131. S. B. Tencza, T. A. Mietzner, and R. C. Montelaro, “Calmodulin-binding function of LLP segments from the HIV type 1 transmembrane protein is conserved among natural sequence variants,” AIDS Research and Human Retroviruses, vol. 13, no. 3, pp. 263–269, 1997. View at Google Scholar · View at Scopus
  132. S. B. Tencza, M. A. Miller, K. Islam, T. A. Mietzner, and R. C. Montelaro, “Effect of amino acid substitutions on calmodulin binding and cytolytic properties of the LLP-1 peptide segment of human immunodeficiency virus type 1 transmembrane protein,” Journal of Virology, vol. 69, no. 8, pp. 5199–5202, 1995. View at Google Scholar · View at Scopus
  133. F. Drees, S. Pokutta, S. Yamada, W. J. Nelson, and W. I. Weis, “α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly,” Cell, vol. 123, no. 5, pp. 903–915, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. E. M. Kim, K. H. Lee, and J. W. Kim, “The cytoplasmic domain of HIV-1 gp41 interacts with the carboxyl-terminal region of α-catenin,” Molecules and Cells, vol. 9, no. 3, pp. 281–285, 1999. View at Google Scholar · View at Scopus
  135. T. K. Jong, M. K. Eun, H. L. Kyoung, J. E. Choi, B. H. Jhun, and W. K. Jung, “Leucine zipper domain of HIV-1 gp41 interacted specifically with α-catenin,” Biochemical and Biophysical Research Communications, vol. 291, no. 5, pp. 1239–1244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Munro, “Lipid rafts: elusive or illusive?” Cell, vol. 115, no. 4, pp. 377–388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. K. Simons and M. J. Gerl, “Revitalizing membrane rafts: new tools and insights,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 688–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. D. A. Brown and E. London, “Structure and function of sphingolipid- and cholesterol-rich membrane rafts,” Journal of Biological Chemistry, vol. 275, no. 23, pp. 17221–17224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  139. K. Simons and D. Toomre, “Lipid rafts and signal transduction,” Nature Reviews Molecular Cell Biology, vol. 1, no. 1, pp. 31–39, 2000. View at Google Scholar · View at Scopus
  140. K. I. Lim, S. Narayan, J. A. T. Young, and J. Yin, “Effects of lipid rafts on dynamics of retroviral entry and trafficking: quantitative analysis,” Biotechnology and Bioengineering, vol. 86, no. 6, pp. 650–660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Narayan, R. J. O. Barnard, and J. A. T. Young, “Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity,” Journal of Virology, vol. 77, no. 3, pp. 1977–1983, 2003. View at Publisher · View at Google Scholar · View at Scopus
  142. D. H. Nguyen and J. E. K. Hildreth, “Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts,” Journal of Virology, vol. 74, no. 7, pp. 3264–3272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Ono and E. O. Freed, “Plasma membrane rafts play a critical role in HIV-1 assembly and release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13925–13930, 2001. View at Publisher · View at Google Scholar · View at Scopus
  144. W. F. Pickl, F. X. Pimentel-Muiñios, and B. Seed, “Lipid rafts and pseudotyping,” Journal of Virology, vol. 75, no. 15, pp. 7175–7183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. A. A. Waheed and E. O. Freed, “Lipids and membrane microdomains in HIV-1 replication,” Virus Research, vol. 143, no. 2, pp. 162–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. A. A. Waheed and E. O. Freed, “The role of lipids in retrovirus replication,” Viruses, vol. 2, no. 5, pp. 1146–1180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. J. A. G. Briggs, T. Wilk, and S. D. Fuller, “Do lipid rafts mediate virus assembly and pseudotyping?” Journal of General Virology, vol. 84, no. 4, pp. 757–768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. D. R. M. Graham, E. Chertova, J. M. Hilburn, L. O. Arthur, and J. E. K. Hildreth, “Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with β-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts,” Journal of Virology, vol. 77, no. 15, pp. 8237–8248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. O. W. Lindwasser and M. D. Resh, “Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains,” Journal of Virology, vol. 75, no. 17, pp. 7913–7924, 2001. View at Publisher · View at Google Scholar · View at Scopus
  150. I. Rousso, M. B. Mixon, B. K. Chen, and P. S. Kim, “Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13523–13525, 2000. View at Publisher · View at Google Scholar · View at Scopus
  151. M. E. Hemler, “Tetraspanin functions and associated microdomains,” Nature Reviews Molecular Cell Biology, vol. 6, no. 10, pp. 801–811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. C. Jolly and Q. J. Sattentau, “Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains,” Journal of Virology, vol. 81, no. 15, pp. 7873–7884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. D. N. Krementsov, P. Rassam, E. Margeat et al., “HIV-1 assembly differentially alters dynamics and partitioning of tetraspanins and raft components,” Traffic, vol. 11, no. 11, pp. 1401–1414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. S. Nydegger, S. Khurana, D. N. Krementsov, M. Foti, and M. Thali, “Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1,” Journal of Cell Biology, vol. 173, no. 5, pp. 795–807, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. F. Martin, D. M. Roth, D. A. Jans et al., “Tetraspanins in viral infections: a fundamental role in viral biology?” Journal of Virology, vol. 79, no. 17, pp. 10839–10851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  156. S. Khurana, D. N. Krementsov, A. de Parseval, J. H. Elder, M. Foti, and M. Thali, “Human immunodeficiency virus type 1 and influenza virus exit via different membrane microdomains,” Journal of Virology, vol. 81, no. 22, pp. 12630–12640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. I. B. Hogue, J. R. Grover, F. Soheilian, K. Nagashima, and A. Ono, “Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane,” Journal of Virology, vol. 85, pp. 9749–9766, 2011. View at Google Scholar
  158. K. Leung, J. O. Kim, L. Ganesh, J. Kabat, O. Schwartz, and G. J. Nabel, “HIV-1 assembly: viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV-1 capsids and virions,” Cell Host and Microbe, vol. 3, no. 5, pp. 285–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. M. Nejmeddine and C. R. M. Bangham, “The HTLV-1 virological synapse,” Viruses, vol. 2, no. 7, pp. 1427–1447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. H. Sato, J. Orenstein, D. Dimitrov, and M. Martin, “Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles,” Virology, vol. 186, no. 2, pp. 712–724, 1992. View at Publisher · View at Google Scholar · View at Scopus
  161. T. Igakura, J. C. Stinchcombe, P. K. C. Goon et al., “Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton,” Science, vol. 299, no. 5613, pp. 1713–1716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  162. Q. J. Sattentau, “Cell-to-cell spread of retroviruses,” Viruses, vol. 2, no. 6, pp. 1306–1321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. S. Sowinski, C. Jolly, O. Berninghausen et al., “Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission,” Nature Cell Biology, vol. 10, no. 2, pp. 211–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. A. M. Pais-Correia, M. Sachse, S. Guadagnini et al., “Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses,” Nature Medicine, vol. 16, no. 1, pp. 83–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. N. M. Sherer, J. Jin, and W. Mothes, “Directional spread of surface-associated retroviruses regulated by differential virus-cell interactions,” Journal of Virology, vol. 84, no. 7, pp. 3248–3258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. N. M. Sherer, M. J. Lehmann, L. F. Jimenez-Soto, C. Horensavitz, M. Pypaert, and W. Mothes, “Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission,” Nature Cell Biology, vol. 9, no. 3, pp. 310–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. J. Jin, F. Li, and W. Mothes, “Viral determinants of polarized assembly for the murine leukemia virus,” Journal of Virology, vol. 85, no. 15, pp. 7672–7682, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. J. Jin, N. M. Sherer, G. Heidecker, D. Derse, and W. Mothes, “Assembly of the murine leukemia virus is directed towards sites of cell-cell contact,” PLoS Biology, vol. 7, no. 7, Article ID e1000163, 2009. View at Publisher · View at Google Scholar · View at Scopus