Table of Contents
Molecular Biology International
Volume 2012 (2012), Article ID 863405, 16 pages
http://dx.doi.org/10.1155/2012/863405
Review Article

Cellular Cofactors of Lentiviral Integrase: From Target Validation to Drug Discovery

The Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium

Received 1 March 2012; Revised 3 June 2012; Accepted 27 June 2012

Academic Editor: Suryaram Gummuluru

Copyright © 2012 Oliver Taltynov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. UNAIDS, “Report on the global AIDS epidemic. Geneva, UNAIDS,” 2010, http://www.unaids.org/en/KnowledgeCentre/HIVData/GlobalReport/2008.
  2. S. Moir, T. W. Chun, and A. S. Fauci, “Pathogenic mechanisms of HIV disease,” Annual Review of Pathology, vol. 6, pp. 223–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Choudhary and D. M. Margolis, “Curing HIV: pharmacologic approaches to target HIV-1 Latency,” Annual Review of Pharmacology and Toxicology, vol. 51, pp. 397–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. Margolis, “Eradication therapies for HIV infection: time to begin again,” AIDS Research and Human Retroviruses, vol. 27, no. 4, pp. 347–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Nájera, E. Delgado, L. Pérez-Alvarez, and M. M. Thomson, “Genetic recombination and its role in the development of the HIV-1 pandemic,” AIDS, vol. 16, no. 4, pp. S3–S16, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Rambaut, D. Posada, K. A. Crandall, and E. C. Holmes, “The causes and consequences of HIV evolution,” Nature Reviews Genetics, vol. 5, no. 1, pp. 52–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Van Maele, K. Busschots, L. Vandekerckhove, F. Christ, and Z. Debyser, “Cellular co-factors of HIV-1 integration,” Trends in Biochemical Sciences, vol. 31, no. 2, pp. 98–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Jäger, P. Cimermancic, N. Gulbahce et al., “Global landscape of HIV-human protein complexes,” Nature, vol. 481, no. 7381, pp. 365–370, 2011. View at Google Scholar
  9. T. Berg, “Modulation of protein-protein interactions with small organic molecules,” Angewandte Chemie, vol. 42, no. 22, pp. 2462–2481, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Wells and C. L. McClendon, “Reaching for high-hanging fruit in drug discovery at protein-protein interfaces,” Nature, vol. 450, no. 7172, pp. 1001–1009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Arkin and J. A. Wells, “Small-molecule inhibitors of protein-protein interactions: progressing towards the dream,” Nature Reviews Drug Discovery, vol. 3, no. 4, pp. 301–317, 2004. View at Google Scholar · View at Scopus
  12. E. De Clercq, “HIV life cycle: targets for anti-HIV agents,” in HIV-1 Integrase: Mechanism and Inhibitor Design, N. Neamati, Ed., pp. 1–14, John Wiley & Sons, Hoboken, NJ, USA, 2011. View at Google Scholar
  13. R. König, Y. Zhou, D. Elleder et al., “Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication,” Cell, vol. 135, no. 1, pp. 49–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Houzet and K. T. Jeang, “Genome-Wide screening using RNA interference to study host factors in viral replication and pathogenesis,” Experimental Biology and Medicine, vol. 236, no. 8, pp. 962–967, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Dorr, M. Westby, S. Dobbs et al., “Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 11, pp. 4721–4732, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sayana and H. Khanlou, “Maraviroc: a new CCR5 antagonist,” Expert Review of Anti-Infective Therapy, vol. 7, no. 1, pp. 9–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Busschots, J. De Rijck, F. Christ, and Z. Debyser, “In search of small molecules blocking interactions between HIV proteins and intracellular cofactors,” Molecular BioSystems, vol. 5, no. 1, pp. 21–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. S. Adamson and E. O. Freed, “Novel approaches to inhibiting HIV-1 replication,” Antiviral Research, vol. 85, no. 1, pp. 119–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. W. C. Greene, Z. Debyser, Y. Ikeda et al., “Novel targets for HIV therapy,” Antiviral Research, vol. 80, no. 3, pp. 251–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. P. Rice and R. E. Sutton, “Targeting protein-protein interactions for HIV therapeutics,” Future HIV Therapy, vol. 1, no. 4, pp. 369–385, 2007. View at Google Scholar
  21. A. Hombrouck, J. De Rijck, J. Hendrix et al., “Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV,” PLoS Pathogens, vol. 3, no. 3, Article ID e47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Luo and M. A. Muesing, “Prospective strategies for targeting HIV-1 integrase function,” Future Medicinal Chemistry, vol. 2, no. 7, pp. 1055–1060, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. D. Bushman, T. Fujiwara, and R. Craigie, “Retroviral DNA integration directed by HIV integration protein in vitro,” Science, vol. 249, no. 4976, pp. 1555–1558, 1990. View at Google Scholar · View at Scopus
  24. O. Delelis, K. Carayon, A. Saïb, E. Deprez, and J. F. Mouscadet, “Integrase and integration: biochemical activities of HIV-1 integrase,” Retrovirology, vol. 5, article 114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. P. A. M. Eijkelenboom, F. M. I. Van Den Ent, A. Vos et al., “The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc,” Current Biology, vol. 7, no. 10, pp. 739–746, 1997. View at Google Scholar · View at Scopus
  26. L. Haren, B. Ton-Hoang, and M. Chandler, “Integrating DNA: transposases and retroviral integrases,” Annual Review of Microbiology, vol. 53, pp. 245–281, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. A. P. A. M. Eijkelenboom, R. A. P. Lutzke, R. Boelens, R. H. A. Plasterk, R. Kaptein, and K. Hard, “The DNA-binding domain of HIV-1 integrase has an SH3-like fold,” Nature Structural Biology, vol. 2, no. 9, pp. 807–810, 1995. View at Google Scholar · View at Scopus
  28. P. Cherepanov, G. Maertens, P. Proost et al., “HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 372–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Hare, S. S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, “Retroviral intasome assembly and inhibition of DNA strand transfer,” Nature, vol. 464, no. 7286, pp. 232–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Y. Wang, H. Ling, W. Yang, and R. Craigie, “Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein,” EMBO Journal, vol. 20, no. 24, pp. 7333–7343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. C. H. Chen, J. Krucinski, L. J. W. Miercke et al., “Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8233–8238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Jaskolski, J. N. Alexandratos, G. Bujacz, and A. Wlodawer, “Piecing together the structure of retroviral integrase, an important target in AIDS therapy,” FEBS Journal, vol. 276, no. 11, pp. 2926–2946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. R. Huff, “HIV protease: a novel chemotherapeutic target for AIDS,” Journal of Medicinal Chemistry, vol. 34, no. 8, pp. 2305–2314, 1991. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Navia, P. M. D. Fitzgerald, B. M. McKeever et al., “Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1,” Nature, vol. 337, no. 6208, pp. 615–620, 1989. View at Google Scholar · View at Scopus
  35. A. Wlodawer and J. Vondrasek, “Inhibitors of HIV-1 protease: a major success of structure-assisted drug design,” Annual Review of Biophysics and Biomolecular Structure, vol. 27, pp. 249–284, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Miller, “The early years of retroviral protease crystal structures,” Biopolymers, vol. 94, no. 4, pp. 521–529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Christ, A. Voet, A. Marchand et al., “Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication,” Nature Chemical Biology, vol. 6, no. 6, pp. 442–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Thys, K. Bartholomeeusen, Z. Debyser, and J. De Rijck, “Cellular cofactors of HIV integration,” in HIV-1 Integrase: Mechanism and Inhibitor Design, N. Neamati, Ed., pp. 105–129, John Wiley & Sons, Hoboken, NJ, USA, 2011. View at Google Scholar
  39. C. M. Farnet and F. D. Bushman, “HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro,” Cell, vol. 88, no. 4, pp. 483–492, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. I. De Martino, R. Visone, M. Fedele et al., “Regulation of microRNA expression by HMGA1 proteins,” Oncogene, vol. 28, no. 11, pp. 1432–1442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Fusco and M. Fedele, “Roles of HMGA proteins in cancer,” Nature Reviews Cancer, vol. 7, no. 12, pp. 899–910, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. S. Lee and R. Craigie, “A previously unidentified host protein protects retroviral DNA from autointegration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1528–1533, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. C. W. Lin and A. Engelman, “The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes,” Journal of Virology, vol. 77, no. 8, pp. 5030–5036, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Suzuki and R. Craigie, “Regulatory mechanisms by which barrier-to-autointegration factor blocks autointegration and stimulates intermolecular integration of Moloney murine leukemia virus preintegration complexes,” Journal of Virology, vol. 76, no. 23, pp. 12376–12380, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. C. Shun, J. E. Daigle, N. Vandegraaff, and A. Engelman, “Wild-type levels of human immunodeficiency virus type 1 infectivity in the absence of cellular emerin protein,” Journal of Virology, vol. 81, no. 1, pp. 166–172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. B. Feinberg and D. Trono, “Intracellular immunization: trans-dominant mutants of HIV gene products as tools for the study and interruption of viral replication,” AIDS Research and Human Retroviruses, vol. 8, no. 6, pp. 1013–1022, 1992. View at Google Scholar · View at Scopus
  47. D. Bevec, M. Dobrovnik, J. Hauber, and E. Bohnlein, “Inhibition of human immunodeficiency virus type 1 replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Rev trans-activator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 20, pp. 9870–9874, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. S. E. Liem, A. Ramezani, X. Li, and S. Joshi, “The development and testing of retroviral vectors expressing trans-dominant mutants of HIV-1 proteins to confer anti-HIV-1 resistance,” Human Gene Therapy, vol. 4, no. 5, pp. 625–634, 1993. View at Google Scholar · View at Scopus
  49. J. De Rijck, L. Vandekerckhove, R. Gijsbers et al., “Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication,” Journal of Virology, vol. 80, no. 23, pp. 11498–11509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Llano, D. T. Saenz, A. Meehan et al., “An essential role for LEDGF/p75 in HIV integration,” Science, vol. 314, no. 5798, pp. 461–464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. T. M. Murali, M. D. Dyer, D. Badger, B. M. Tyler, and M. G. Katze, “Network-based prediction and analysis of HIV dependency factors,” PLoS Computational Biology, vol. 7, no. 9, pp. e1002164–e1002178, 2011. View at Google Scholar
  52. J. C. Rain, A. Cribier, A. Gérard, S. Emiliani, and R. Benarous, “Yeast two-hybrid detection of integrase-host factor interactions,” Methods, vol. 47, no. 4, pp. 291–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. G. V. Kalpana, S. Marmon, W. Wang, G. R. Crabtree, and S. P. Goff, “Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5,” Science, vol. 266, no. 5193, pp. 2002–2006, 1994. View at Google Scholar · View at Scopus
  54. F. Christ, W. Thys, J. De Rijck et al., “Transportin-SR2 Imports HIV into the Nucleus,” Current Biology, vol. 18, no. 16, pp. 1192–1202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. A. L. Brass, D. M. Dykxhoorn, Y. Benita et al., “Identification of host proteins required for HIV infection through a functional genomicscreen,” Science, vol. 319, no. 5865, pp. 921–926, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Zhou, M. Xu, Q. Huang et al., “Genome-scale RNAi screen for host factors required for HIV replication,” Cell Host and Microbe, vol. 4, no. 5, pp. 495–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. F. D. Bushman, N. Malani, J. Fernandes et al., “Host cell factors in HIV replication: meta-analysis of genome-wide studies,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Thys, S. De Houwer, J. Demeulemeester et al., “Interplay between HIV entry and transportin-SR2 dependency,” Retrovirology, vol. 8, article 7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. S. A. Adam, R. Sterne-Marr, and L. Gerace, “Chapter 18 in vitro nuclear protein import using permeabilized mammalian cells,” Methods in Cell Biology, vol. 35, pp. 469–482, 1991. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Marshallsay and R. Luhrmann, “In vitro nuclear import of snRNPs: cytosolic factors mediate m3G-cap dependence of U1 and U2 snRNP transport,” EMBO Journal, vol. 13, no. 1, pp. 222–231, 1994. View at Google Scholar · View at Scopus
  61. J. E. Hagstrom, J. J. Ludtke, M. C. Bassik, M. G. Sebestyén, S. A. Adam, and J. A. Wolff, “Nuclear import of DNA in digitonin-permeabilized cells,” Journal of Cell Science, vol. 110, no. 18, pp. 2323–2331, 1997. View at Google Scholar · View at Scopus
  62. D. McDonald, M. A. Vodicka, G. Lucero et al., “Visualization of the intracellular behavior of HIV in living cells,” Journal of Cell Biology, vol. 159, no. 3, pp. 441–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Arhel, A. Genovesio, K. A. Kim et al., “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nature Methods, vol. 3, no. 10, pp. 817–824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Müller, “Novel imaging technologies in the study of HIV,” Future Virology, vol. 6, no. 8, pp. 929–940, 2011. View at Google Scholar
  65. A. Albanese, D. Arosio, M. Terreni, and A. Cereseto, “HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery,” PLoS ONE, vol. 3, no. 6, Article ID e2413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Wu, H. Liu, H. Xiao et al., “Targeting foreign proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx,” Journal of Virology, vol. 69, no. 6, pp. 3389–3398, 1995. View at Google Scholar · View at Scopus
  67. P. Colas, “High-throughput screening assays to discover small-molecule inhibitors of protein interactions,” Current Drug Discovery Technologies, vol. 5, no. 3, pp. 190–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. L. M. Mayr and D. Bojanic, “Novel trends in high-throughput screening,” Current Opinion in Pharmacology, vol. 9, no. 5, pp. 580–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. A. Cooper, “Optical biosensors: where next and how soon?” Drug Discovery Today, vol. 11, no. 23-24, pp. 1061–1067, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Izumoto, T. Kuroda, H. Harada, T. Kishimoto, and H. Nakamura, “Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus,” Biochemical and Biophysical Research Communications, vol. 238, no. 1, pp. 26–32, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Dietz, S. Franken, K. Yoshida, H. Nakamura, J. Kappler, and V. Gieselmann, “The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies,” Biochemical Journal, vol. 366, no. 2, pp. 491–500, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Maertens, P. Cherepanov, W. Pluymers et al., “LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells,” Journal of Biological Chemistry, vol. 278, no. 35, pp. 33528–33539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Ciuffi, M. Llano, E. Poeschla et al., “A role for LEDGF/p75 in targeting HIV DNA integration,” Nature Medicine, vol. 11, no. 12, pp. 1287–1289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. M. C. Shun, N. K. Raghavendra, N. Vandegraaff et al., “LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration,” Genes and Development, vol. 21, no. 14, pp. 1767–1778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. H. M. Marshall, K. Ronen, C. Berry et al., “Role of PSIP 1/LEDGF/p75 in lentiviral infectivity and integration targeting,” PLoS ONE, vol. 2, no. 12, Article ID e1340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Hendrix, R. Gijsbers, J. De Rijck et al., “The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering,” Nucleic Acids Research, vol. 39, no. 4, pp. 1310–1325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Cherepanov, E. Devroe, P. A. Silver, and A. Engelman, “Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 48883–48892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Llano, S. Delgado, M. Vanegas, and E. M. Poeschla, “Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase,” Journal of Biological Chemistry, vol. 279, no. 53, pp. 55570–55577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. E. M. Poeschla, “Integrase, LEDGF/p75 and HIV replication,” Cellular and Molecular Life Sciences, vol. 65, no. 9, pp. 1403–1424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Engelman and P. Cherepanov, “The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication,” PLoS Pathogens, vol. 4, no. 3, Article ID e1000046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Emiliani, A. Mousnier, K. Busschots et al., “Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication,” Journal of Biological Chemistry, vol. 280, no. 27, pp. 25517–25523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Vandekerckhove, F. Christ, B. Van Maele et al., “Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus,” Journal of Virology, vol. 80, no. 4, pp. 1886–1896, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. P. Cherepanov, Z. Y. J. Sun, S. Rahman, G. Maertens, G. Wagner, and A. Engelman, “Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75,” Nature Structural and Molecular Biology, vol. 12, no. 6, pp. 526–532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Cherepanov, A. L. B. Ambrosio, S. Rahman, T. Ellenberger, and A. Engelman, “Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17308–17313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Busschots, A. Voet, M. De Maeyer et al., “Identification of the LEDGF/p75 binding site in HIV-1 integrase,” Journal of Molecular Biology, vol. 365, no. 5, pp. 1480–1492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Q. Al-Mawsawi, F. Christ, R. Dayam, Z. Debyser, and N. Neamati, “Inhibitory profile of a LEDGF/p75 peptide against HIV-1 integrase: insight into integrase-DNA complex formation and catalysis,” FEBS Letters, vol. 582, no. 10, pp. 1425–1430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Du, Y. Zhao, J. Chen et al., “D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75,” Biochemical and Biophysical Research Communications, vol. 375, no. 1, pp. 139–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. L. De Luca, M. L. Barreca, S. Ferro et al., “Pharmacophore-based discovery of small-molecule inhibitors of protein-protein interactions between HIV-1 integrase and cellular cofactor LEDGF/p75,” ChemMedChem, vol. 4, no. 8, pp. 1311–1316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Bartholomeeusen, J. De Rijck, K. Busschots et al., “Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75,” Journal of Molecular Biology, vol. 372, no. 2, pp. 407–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Bartholomeeusen, F. Christ, J. Hendrix et al., “Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of pogZ,” Journal of Biological Chemistry, vol. 284, no. 17, pp. 11467–11477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. G. N. Maertens, P. Cherepanov, and A. Engelman, “Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin,” Journal of Cell Science, vol. 119, no. 12, pp. 2563–2571, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Hughes, V. Jenkins, M. J. Dar, A. Engelman, and P. Cherepanov, “Transcriptional co-activator LEDGF interacts with Cdc7-activator of S-phase kinase (ASK) and stimulates its enzymatic activity,” Journal of Biological Chemistry, vol. 285, no. 1, pp. 541–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Yokoyama and M. L. Cleary, “Menin critically links MLL proteins with LEDGF on cancer-associated target genes,” Cancer Cell, vol. 14, no. 1, pp. 36–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Huang, B. Gurung, B. Wan et al., “The same pocket in menin binds both MLL and JUND but has opposite effects on transcription,” Nature, vol. 482, no. 7386, pp. 542–546, 2012. View at Publisher · View at Google Scholar
  95. Y. Hou, D. E. McGuinness, A. J. Prongay et al., “Screening for antiviral inhibitors of the HIV integrase-LEDGF/p75 interaction using the AlphaScreen luminescent proximity assay,” Journal of Biomolecular Screening, vol. 13, no. 5, pp. 406–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Maignan, J.-P. Guilloteau, Q. Zhou-Liu, C. Clément-Mella, and V. Mikol, “Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases,” Journal of Molecular Biology, vol. 282, no. 2, pp. 359–368, 1998. View at Publisher · View at Google Scholar · View at Scopus
  97. V. Molteni, J. Greenwald, D. Rhodes et al., “Identification of a small-molecule binding site at the dimer interface of the HIV integrase catalytic domain,” Acta Crystallographica Section D, vol. 57, no. 4, pp. 536–544, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. D. J. Hazuda, P. Felock, M. Witmer et al., “Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells,” Science, vol. 287, no. 5453, pp. 646–650, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Schrijvers, J. De Rijck, J. Demeulemeester et al., “LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs,” PLoS Pathogens, vol. 8, no. 3, pp. e1002558–e1002574, 2012. View at Publisher · View at Google Scholar
  100. O. Delelis, I. Malet, L. Na et al., “The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation,” Nucleic Acids Research, vol. 37, no. 4, pp. 1193–1201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Roe, T. C. Reynolds, G. Yu, and P. O. Brown, “Integration of murine leukemia virus DNA depends on mitosis,” EMBO Journal, vol. 12, no. 5, pp. 2099–2108, 1993. View at Google Scholar · View at Scopus
  102. P. F. Lewis and M. Emerman, “Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus,” Journal of Virology, vol. 68, no. 1, pp. 510–516, 1994. View at Google Scholar · View at Scopus
  103. M. I. Bukrinsky, N. Sharova, M. P. Dempsey et al., “Active nuclear import of human immunodeficiency virus type 1 preintegration complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 14, pp. 6580–6584, 1992. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Suzuki and R. Craigie, “The road to chromatin—nuclear entry of retroviruses,” Nature Reviews Microbiology, vol. 5, no. 3, pp. 187–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. J. De Rijck, L. Vandekerckhove, F. Christ, and Z. Debyser, “Lentiviral nuclear import: a complex interplay between virus and host,” BioEssays, vol. 29, no. 5, pp. 441–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. V. Zennou, C. Petit, D. Guetard, U. Nerhbass, L. Montagnier, and P. Charneau, “HIV-1 genome nuclear import is mediated by a central DNA flap,” Cell, vol. 101, no. 2, pp. 173–185, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Sirven, F. Pflumio, V. Zennou et al., “The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells,” Blood, vol. 96, no. 13, pp. 4103–4110, 2000. View at Google Scholar · View at Scopus
  108. J. De Rijck and Z. Debyser, “The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication,” Biochemical and Biophysical Research Communications, vol. 349, no. 3, pp. 1100–1110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Yamashita and M. Emerman, “Retroviral infection of non-dividing cells: old and new perspectives,” Virology, vol. 344, no. 1, pp. 88–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Yamashita and M. Emerman, “The cell cycle independence of HIV infections is not determined by known karyophilic viral elements,” PLoS Pathogens, vol. 1, no. 3, Article ID e18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Van Maele, J. De Rijck, E. De Clercq, and Z. Debyser, “Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction,” Journal of Virology, vol. 77, no. 8, pp. 4685–4694, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. L. Rivière, J. L. Darlix, and A. Cimarelli, “Analysis of the viral elements required in the nuclear import of HIV-1 DNA,” Journal of Virology, vol. 84, no. 2, pp. 729–739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Yamashita and M. Emerman, “Capsid is a dominant determinant of retrovirus infectivity in nondividing cells,” Journal of Virology, vol. 78, no. 11, pp. 5670–5678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Yamashita, O. Perez, T. J. Hope, and M. Emerman, “Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells,” PLoS Pathogens, vol. 3, no. 10, Article ID e156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Schaller, K. E. Ocwieja, J. Rasaiyaah et al., “HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency,” PLoS Pathogens, vol. 7, no. 12, pp. e1002439–e1002453, 2011. View at Publisher · View at Google Scholar
  116. P. Gallay, V. Stitt, C. Mundy, M. Oettinger, and D. Trono, “Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import,” Journal of Virology, vol. 70, no. 2, pp. 1027–1032, 1996. View at Google Scholar · View at Scopus
  117. P. Gallay, T. Hope, D. Chin, and D. Trono, “HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9825–9830, 1997. View at Publisher · View at Google Scholar · View at Scopus
  118. O. K. Haffar, S. Popov, L. Dubrovsky et al., “Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex,” Journal of Molecular Biology, vol. 299, no. 2, pp. 359–368, 2000. View at Publisher · View at Google Scholar · View at Scopus
  119. A. C. Hearps and D. A. Jans, “HIV-1 integrase is capable of targeting DNA to the nucleus via an importin α/β-dependent mechanism,” Biochemical Journal, vol. 398, no. 3, pp. 475–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. Z. Ao, K. D. Jayappa, B. Wang et al., “Importin α3 interacts with HIV-1 integrase and contributes to HIV-1 nuclear import and replication,” Journal of Virology, vol. 84, no. 17, pp. 8650–8663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. K. D. Jayappa, Z. Ao, M. Yang, J. Wang, and X. Yao, “Identification of critical motifs within HIV-1 integrase required for importin α3 interaction and viral cDNA nuclear import,” Journal of Molecular Biology, vol. 410, no. 5, pp. 847–862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Fassati, D. Görlich, I. Harrison, L. Zaytseva, and J. M. Mingot, “Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7,” EMBO Journal, vol. 22, no. 14, pp. 3675–3685, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. Z. Ao, G. Huang, H. Yao et al., “Interaction of human immunodeficiency virus type 1 integrase with cellular nuclear import receptor importin 7 and its impact on viral replication,” Journal of Biological Chemistry, vol. 282, no. 18, pp. 13456–13467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. C. L. Woodward, S. Prakobwanakit, S. Mosessian, and S. A. Chow, “Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1,” Journal of Virology, vol. 83, no. 13, pp. 6522–6533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. K. Lee, Z. Ambrose, T. D. Martin et al., “Flexible use of nuclear import pathways by HIV-1,” Cell Host and Microbe, vol. 7, no. 3, pp. 221–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. P. Varadarajan, S. Mahalingam, P. Liu et al., “The functionally conserved nucleoporins Nup124p from fission yeast and the human Nup153 mediate nuclear import and activity of the Tf1 retrotransposon and HIV-1 Vpr,” Molecular Biology of the Cell, vol. 16, no. 4, pp. 1823–1838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. K. A. Matreyek and A. Engelman, “The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid,” Journal of Virology, vol. 85, no. 15, pp. 7818–7827, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. Z. Ao, K. Danappa Jayappa, B. Wang et al., “Contribution of host nucleoporin 62 in HIV-1 integrase chromatin association and viral DNA integration,” Journal of Biological Chemistry, vol. 287, no. 13, pp. 10544–10555, 2012. View at Publisher · View at Google Scholar
  129. S. Popov, M. Rexach, L. Ratner, G. Blobel, and M. Bukrinsky, “Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex,” Journal of Biological Chemistry, vol. 273, no. 21, pp. 13347–13352, 1998. View at Publisher · View at Google Scholar · View at Scopus
  130. K.-H. Kok, T. Lei, and D.-Y. Jin, “SiRNA and shRNA screens advance key understanding of host factors required for HIV-1 replication,” Retrovirology, vol. 6, article 78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. H. Ebina, J. Aoki, S. Hatta, T. Yoshida, and Y. Koyanagi, “Role of Nup98 in nuclear entry of human immunodeficiency virus type 1 cDNA,” Microbes and Infection, vol. 6, no. 8, pp. 715–724, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. M. L. Yeung, L. Houzet, V. S. R. K. Yedavalli, and K. T. Jeang, “A genome-wide short hairpin RNA screening of Jurkat T-cells for human proteins contributing to productive HIV-1 replication,” Journal of Biological Chemistry, vol. 284, no. 29, pp. 19463–19473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Hutten, S. Wälde, C. Spillner, J. Hauber, and R. H. Kehlenbach, “The nuclear pore component Nup358 promotes transportin-dependent nuclear import,” Journal of Cell Science, vol. 122, no. 8, pp. 1100–1110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. K. E. Ocwieja, T. L. Brady, K. Ronen et al., “HIV integration targeting: a pathway involving transportin-3 and the nuclear pore protein RanBP2,” PLoS Pathogens, vol. 7, no. 3, Article ID e1001313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Armon-Omer, A. Graessmann, and A. Loyter, “A synthetic peptide bearing the HIV-1 integrase 161-173 amino acid residues mediates active nuclear import and binding to importin α: characterization of a functional nuclear localization signal,” Journal of Molecular Biology, vol. 336, no. 5, pp. 1117–1128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Köhler, C. Speck, M. Christiansen et al., “Evidence for distinct substrate specificities of importin α family members in nuclear protein import,” Molecular and Cellular Biology, vol. 19, no. 11, pp. 7782–7791, 1999. View at Google Scholar · View at Scopus
  137. C. Depienne, A. Mousnier, H. Leh et al., “Characterization of the nuclear import pathway for HIV-1 integrase,” Journal of Biological Chemistry, vol. 276, no. 21, pp. 18102–18107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. S. P. Zielske and M. Stevenson, “Importin 7 may be dispensable for human immunodeficiency virus type 1 and simian immunodeficiency virus infection of primary macrophages,” Journal of Virology, vol. 79, no. 17, pp. 11541–11546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. L. Zaitseva, P. Cherepanov, L. Leyens, S. J. Wilson, J. Rasaiyaah, and A. Fassati, “HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome,” Retrovirology, vol. 6, article 11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Monette, L. Ajamian, M. López-Lastra, and A. J. Mouland, “Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import. Implications for HIV-1 gene expression,” Journal of Biological Chemistry, vol. 284, no. 45, pp. 31350–31362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. A. Monette, N. Panté, and A. J. Mouland, “HIV-1 remodels the nuclear pore complex,” Journal of Cell Biology, vol. 193, no. 4, pp. 619–631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. T. Brady, L. M. Agosto, N. Malani, C. C. Berry, U. O'Doherty, and F. Bushman, “HIV integration site distributions in resting and activated CD4+ T cells infected in culture,” AIDS, vol. 23, no. 12, pp. 1461–1471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Zhang, R. Mehla, and A. Chauhan, “Perturbation of host nuclear membrane component RanBP2 impairs the nuclear import of human immunodeficiency virus -1 preintegration complex (DNA),” PLoS ONE, vol. 5, no. 12, Article ID e15620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. M. C. Lai, R. I. Lin, S. Y. Huang, C. W. Tsai, and W. Y. Tarn, “A human importin-β family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins,” Journal of Biological Chemistry, vol. 275, no. 11, pp. 7950–7957, 2000. View at Publisher · View at Google Scholar · View at Scopus
  145. N. Kataoka, J. L. Bachorik, and G. Dreyfuss, “Transportin-SR, a nuclear import receptor for SR proteins,” Journal of Cell Biology, vol. 145, no. 6, pp. 1145–1152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  146. M. C. Lai, R. I. Lin, and W. Y. Tarn, “Transportin-SR2 mediates nuclear import of phosphorylated SR proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10154–10159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  147. M. C. Lai, H. W. Kuo, W. C. Chang, and W. Y. Tarn, “A novel splicing regulator shares a nuclear import pathway with SR proteins,” EMBO Journal, vol. 22, no. 6, pp. 1359–1369, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Anguissola, W. J. McCormack, M. A. Morrin, W. J. Higgins, D. M. Fox, and D. M. Worrall, “Pigment Epithelium-Derived Factor (PEDF) Interacts with Transportin SR2, and Active Nuclear Import Is Facilitated by a Novel Nuclear Localization Motif,” PLoS ONE, vol. 6, no. 10, pp. e26234–e26244, 2011. View at Google Scholar
  149. M. L. Hedley, H. Amrein, and T. Maniatis, “An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11524–11528, 1995. View at Publisher · View at Google Scholar · View at Scopus
  150. J. F. Cáceres, T. Misteli, G. R. Screaton, D. L. Spector, and A. R. Krainer, “Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity,” Journal of Cell Biology, vol. 138, no. 2, pp. 225–238, 1997. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Stewart, “Molecular mechanism of the nuclear protein import cycle,” Nature Reviews Molecular Cell Biology, vol. 8, no. 3, pp. 195–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Caputi, M. Freund, S. Kammler, C. Asang, and H. Schaal, “A bidirectional SF2/ASF- and SRp40-dependent splicing enhancer regulates human immunodeficiency virus type 1 rev, env, vpu, and nef gene expression,” Journal of Virology, vol. 78, no. 12, pp. 6517–6526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Jacquenet, D. Decimo, D. Muriaux, and J. L. Darlix, “Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production,” Retrovirology, vol. 2, article 33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. L. Krishnan, K. A. Matreyek, I. Oztop et al., “The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase,” Journal of Virology, vol. 84, no. 1, pp. 397–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. A. De Iaco and J. Luban, “Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus,” Retrovirology, vol. 8, pp. 98–116, 2011. View at Publisher · View at Google Scholar
  156. E. C. Logue, K. T. Taylor, P. H. Goff, and N. R. Landau, “The cargo-binding domain of transportin 3 is required for lentivirus nuclear import,” Journal of Virology, vol. 85, no. 24, pp. 12950–12961, 2011. View at Publisher · View at Google Scholar
  157. D. Yu, W. Wang, A. Yoder, M. Spear, and Y. Wu, “The HIV envelope but not VSV glycoprotein is capable of mediating HIV latent infection of resting CD4 T cells,” PLoS Pathogens, vol. 5, no. 10, Article ID e1000633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. A. Cribier, E. Segeral, O. Delelis et al., “Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import,” Retrovirology, vol. 8, no. 1, pp. 104–117, 2011. View at Google Scholar
  159. L. Zhou, E. Sokolskaja, C. Jolly, W. James, S. A. Cowley, and A. Fassati, “Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration,” PLoS Pathogens, vol. 7, no. 8, pp. e1002194–e1002212, 2011. View at Publisher · View at Google Scholar