Table of Contents
Molecular Biology International
Volume 2014 (2014), Article ID 967565, 9 pages
http://dx.doi.org/10.1155/2014/967565
Review Article

Regulatory Variants and Disease: The E-Cadherin −160C/A SNP as an Example

1Department of Urology, Wuhan General Hospital, Guangzhou Command PLA, China
2Molecular Medicine Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
3Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA

Received 6 July 2014; Revised 23 August 2014; Accepted 25 August 2014; Published 2 September 2014

Academic Editor: Malayannan B. Subramaniam

Copyright © 2014 Gongcheng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. S. Collins, M. S. Guyer, and A. Charkravarti, “Variations on a theme: cataloging human DNA sequence variation,” Science, vol. 278, no. 5343, pp. 1580–1581, 1997. View at Google Scholar
  2. D. G. Wang, J. B. Fan, C. J. Siao et al., “Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome,” Science, vol. 280, no. 5366, pp. 1077–1082, 1998. View at Publisher · View at Google Scholar
  3. M. A. Schaub, A. P. Boyle, A. Kundaje, S. Batzoglou, and M. Snyder, “Linking disease associations with regulatory information in the human genome,” Genome Research, vol. 22, no. 9, pp. 1748–1759, 2012. View at Publisher · View at Google Scholar
  4. I. Molineris, D. Schiavone, F. Rosa, G. Matullo, V. Poli, and P. Provero, “Identification of functional cis-regulatory polymorphisms in the human genome,” Human Mutation, vol. 34, no. 5, pp. 735–742, 2013. View at Publisher · View at Google Scholar
  5. J. C. Knight, B. J. Keating, K. A. Rockett, and D. P. Kwiatkowski, “In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading,” Nature Genetics, vol. 33, no. 4, pp. 469–475, 2003. View at Google Scholar
  6. T. J. Hudson, “Wanted: regulatory SNPs,” Nature Genetics, vol. 33, pp. 439–440, 2003. View at Google Scholar
  7. L. C. Li, H. Zhao, and K. Nakajima, “Methylation of the E-cadherin gene promoter correlates with progression of prostate cancer,” Journal of Urology, vol. 166, no. 2, pp. 705–709, 2001. View at Publisher · View at Google Scholar
  8. X. Zhang, X. Ma, Q. G. Zhu, L. C. Li, Z. Chen, and Z. Q. Ye, “Association between a C/A single nucleotide polymorphism of the E-cadherin gene promoter and transitional cell carcinoma of the bladder,” The Journal of Urology, vol. 170, no. 4, part 1, pp. 1379–1382, 2003. View at Publisher · View at Google Scholar
  9. D. Pookot, L. C. Li, Z. L. Tabatabai, Y. Tanaka, K. L. Greene, and R. Dahiya, “The E-cadherin-160 C/A polymorphism and prostate cancer risk in white and black American men,” The Journal of Urology, vol. 2006, no. 2, pp. 793–796, 2006. View at Google Scholar
  10. L. Wang, G. Wang, C. Lu, B. Feng, and J. Kang, “Contribution of the -160C/A polymorphism in the E-cadherin promoter to cancer risk: a meta-analysis of 47 case-control studies,” PLoS ONE, vol. 7, no. 7, Article ID e40219, 2012. View at Google Scholar
  11. P. Geng, Y. Chen, J. Ou, X. Yin, R. Sa, and H. Liang, “The E-cadherin (CDH1)-C160A polymorphism and colorectal cancer susceptibility: a meta-analysis,” DNA and Cell Biology, vol. 2012, no. 6, pp. 1070–1077, 2012. View at Google Scholar
  12. Y. Cui, H. Xue, B. Lin, P. Ni, and J. Y. Fang, “A meta-analysis of CDH1 C-160A genetic polymorphism and gastric cancer risk,” DNA and Cell Biology, vol. 30, no. 11, pp. 937–945, 2011. View at Google Scholar
  13. Y. Wang, C. Z. Kong, Z. Zhang, C. M. Yang, and J. Li, “Role of CDH1 promoter polymorphism and DNA methylation in bladder carcinogenesis: a meta-analysis,” DNA and Cell Biology, vol. 33, no. 4, pp. 205–216, 2014. View at Publisher · View at Google Scholar
  14. M. J. Ziller, H. Gu, F. Muller et al., “Charting a dynamic DNA methylation landscape of the human genome,” Nature, vol. 500, no. 7463, pp. 477–481, 2013. View at Publisher · View at Google Scholar
  15. V. Huang, R. F. Place, V. Portnoy et al., “Upregulation of Cyclin B1 by miRNA and its implications in cancer,” Nucleic Acids Research, vol. 40, no. 4, pp. 1695–1707, 2012. View at Google Scholar
  16. M. de Gobbi, V. Viprakasit, J. R. Hughes et al., “A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter,” Science, vol. 312, no. 5777, pp. 1215–1217, 2006. View at Google Scholar
  17. V. G. Cheung and R. S. Spielman, “Genetics of human gene expression: mapping DNA variants that influence gene expression,” Nature Reviews Genetics, vol. 10, no. 9, pp. 595–604, 2009. View at Google Scholar
  18. M. Kasowski, F. Grubert, C. Heffelfinger et al., “Variation in transcription factor binding among humans,” Science, vol. 328, no. 5975, pp. 232–235, 2010. View at Publisher · View at Google Scholar
  19. R. McDaniell, B. K. Lee, and L. Song, “Heritable individual-specific and allele-specific chromatin signatures in humans,” Science, vol. 328, no. 5975, pp. 235–239, 2010. View at Google Scholar
  20. M. Kasowski, S. Kyriazopoulou-Panagiotopoulou, F. Grubert et al., “Extensive variation in chromatin states across humans,” Science, vol. 342, no. 6159, pp. 750–752, 2013. View at Publisher · View at Google Scholar
  21. H. Kilpinen, S. M. Waszak, A. R. Gschwind et al., “Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription,” Science, vol. 342, no. 6159, pp. 744–747, 2013. View at Publisher · View at Google Scholar
  22. L. C. Li, “Chromatin remodeling by the small RNA machinery in mammalian cells,” Epigenetics, vol. 9, no. 1, pp. 45–52, 2014. View at Publisher · View at Google Scholar
  23. M. Takeichi, “Cadherin cell adhesion receptors as a morphogenetic regulator,” Science, vol. 251, no. 5000, pp. 1451–1455, 1991. View at Google Scholar
  24. U. H. Frixen, J. Behrens, M. Sachs et al., “E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells,” The Journal of Cell Biology, vol. 113, no. 1, pp. 173–185, 1991. View at Google Scholar
  25. A. Nagafuchi, S. Ishihara, and S. Tsukita, “The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin-alpha catenin fusion molecules,” The Journal of Cell Biology, vol. 127, no. 1, pp. 235–245, 1994. View at Google Scholar
  26. R. Umbas, J. A. Schalken, T. W. Aalders et al., “Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer,” Cancer Research, vol. 52, no. 18, pp. 5104–5109, 1992. View at Google Scholar
  27. C. Gamallo, J. Palacios, A. Suarez et al., “Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma,” American Journal of Pathology, vol. 142, no. 4, pp. 987–993, 1993. View at Google Scholar
  28. M. Pignatelli, T. W. Ansari, and P. Gunter, “Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage,” The Journal of Pathology, vol. 174, no. 4, pp. 243–248, 1994. View at Publisher · View at Google Scholar
  29. B. Mayer, J. P. Johnson, F. Leitl et al., “E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration,” Cancer Research, vol. 53, no. 7, pp. 1690–1695, 1993. View at Google Scholar
  30. A. R. Kinsella, G. C. Lepts, C. L. Hill, and M. Jones, “Reduced E-cadherin expression correlates with increased invasiveness in colorectal carcinoma cell lines,” Clinical & Experimental Metastasis, vol. 12, no. 4, pp. 335–342, 1994. View at Google Scholar
  31. J. A. Efstathiou, D. Liu, J. M. Wheeler et al., “Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2316–2321, 1999. View at Publisher · View at Google Scholar
  32. T. M. Gall and A. E. Frampton, “Gene of the month: E-cadherin (CDH1),” Journal of Clinical Pathology, vol. 66, no. 11, pp. 928–932, 2013. View at Publisher · View at Google Scholar
  33. K. F. Becker, M. J. Atkinson, K. F. Becker, M. J. Atkinson, U. Reich et al., “E-cadherin gene mutations provide clues to diffuse type gastric carcinomas,” Cancer Research, vol. 54, no. 14, pp. 3845–3852, 1994. View at Google Scholar
  34. G. Berx, A. M. Cleton-Jansen, F. Nollet et al., “E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers,” The EMBO Journal, vol. 14, no. 24, pp. 6107–6115, 1995. View at Google Scholar
  35. J. I. Risinger, A. Berchuck, M. F. Kohler, and J. Boyd, “Mutations of the E-cadherin gene in human gynecologic cancers,” Nature Genetics, vol. 7, no. 1, pp. 98–102, 1994. View at Google Scholar
  36. S. Dorudi, J. P. Sheffield, R. Poulsom, J. M. Northover, and I. R. Hart, “E-cadherin expression in colorectal cancer. An immunocytochemical and in situ hybridization study,” The American Journal of Pathology, vol. 142, no. 4, pp. 981–986, 1993. View at Google Scholar
  37. G. Brabant, C. Hoang-Vu, Y. Cetin et al., “E-cadherin: a differentiation marker in thyroid malignancies,” Cancer Research, vol. 53, no. 20, pp. 4987–4993, 1993. View at Google Scholar
  38. J. R. Graff, J. G. Herman, R. G. Lapidus et al., “E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas,” Cancer Research, vol. 55, no. 22, pp. 5195–5199, 1995. View at Google Scholar
  39. J. G. Herman, J. R. Graff, S. Myohanen, B. D. Nelkin, and S. B. Baylin, “Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9821–9826, 1996. View at Google Scholar
  40. J. A. Jankowski, F. K. Bedford, R. A. Boulton et al., “Alterations in classical cadherins associated with progression in ulcerative and Crohn's colitis,” Laboratory Investigation, vol. 78, no. 9, pp. 1155–1167, 1998. View at Google Scholar
  41. R. Gaetje, S. Kotzian, G. Herrmann, R. Baumann, and A. Starzinski-Powitz, “Nonmalignant epithelial cells, potentially invasive in human endometriosis, lack the tumor suppressor molecule E-cadherin,” The American Journal of Pathology, vol. 150, no. 2, pp. 461–467, 1997. View at Google Scholar
  42. L. C. Li, R. M. Chui, and M. Sasaki, “A single nucleotide polymorphism in the E-cadherin gene promoter alters transcriptional activities,” Cancer Research, vol. 60, no. 4, pp. 873–876, 2000. View at Google Scholar
  43. A. Nakamura, T. Shimazaki, K. Kaneko et al., “Characterization of DNA polymorphisms in the E-cadherin gene (CDH1) promoter region,” Mutation Research, vol. 502, no. 1-2, pp. 19–24, 2002. View at Publisher · View at Google Scholar
  44. F. Cattaneo, T. Venesio, and S. Molatore, “Functional analysis and case-control study of -160C/A polymorphism in the E-cadherin gene promoter: association with cancer risk,” Anticancer Research, vol. 26, no. 6B, pp. 4627–4632, 2006. View at Google Scholar
  45. N. Borges Bdo, S. Santos Eda, C. E. Bastos et al., “Promoter polymorphisms and methylation of E-cadherin (CDH1) and KIT in gastric cancer patients from northern Brazil,” Anticancer Research, vol. 30, no. 6, pp. 2225–2233, 2010. View at Google Scholar
  46. K. Kuraoka, N. Oue, H. Yokozaki et al., “Correlation of a single nucleotide polymorphism in the E-cadherin gene promoter with tumorigenesis and progression of gastric carcinoma in Japan,” International Journal of Oncology, vol. 23, no. 2, pp. 421–427, 2003. View at Google Scholar
  47. S. Govatati, N. K. Tangudu, M. Deenadayal, B. Chakravarty, S. Shivaji, and M. Bhanoori, “Association of E-cadherin single nucleotide polymorphisms with the increased risk of endometriosis in Indian women,” Molecular Human Reproduction, vol. 18, no. 5, pp. 280–287, 2012. View at Google Scholar
  48. T. A. Dayeh, A. H. Olsson, P. Volkov, P. Almgren, T. Rönn, and C. Ling, “Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets,” Diabetologia, vol. 56, no. 5, pp. 1036–1046, 2013. View at Publisher · View at Google Scholar
  49. A. J. Savio, M. Lemire, M. Mrkonjic et al., “MLH1 region polymorphisms show a significant association with CpG island shore methylation in a large cohort of healthy individuals,” PLoS One, vol. 7, no. 12, Article ID e51531, 2012. View at Publisher · View at Google Scholar
  50. M. Kloth, W. Goering, T. Ribarska, C. Arsov, K. D. Sorensen, and W. A. Schulz, “The SNP rs6441224 influences transcriptional activity and prognostically relevant hypermethylation of RARRES1 in prostate cancer,” International Journal of Cancer, vol. 131, no. 6, pp. E897–E904, 2012. View at Google Scholar
  51. L. C. Li, P. R. Carroll, and R. Dahiya, “Epigenetic changes in prostate cancer: implication for diagnosis and treatment,” Journal of the National Cancer Institute, vol. 97, no. 2, pp. 103–115, 2005. View at Publisher · View at Google Scholar
  52. B. A. Verhage, K. van Houwelingen, T. E. Ruijter, L. A. Kiemeney, and J. A. Schalken, “Single-nucleotide polymorphism in the E-cadherin gene promoter modifies the risk of prostate cancer,” International Journal of Cancer, vol. 100, no. 6, pp. 683–685, 2002. View at Google Scholar
  53. X. Ma, H. Xu, T. Zheng et al., “DNA polymorphisms in exon 1 and promoter of the CDH1 gene and relevant risk of transitional cell carcinoma of the urinary bladder,” British Journal of Urology, vol. 102, no. 5, pp. 633–636, 2008. View at Google Scholar
  54. H. Tsukino, Y. Kuroda, H. Nakao et al., “E-cadherin gene polymorphism and risk of urothelial cancer,” Cancer Letters, vol. 195, no. 1, pp. 53–58, 2003. View at Publisher · View at Google Scholar
  55. L. A. Kiemeney, K. P. van Houwelingen, M. Bogaerts et al., “Polymorphisms in the E-cadherin (CDH1) gene promoter and the risk of bladder cancer,” European Journal of Cancer, vol. 42, no. 18, pp. 3219–3227, 2006. View at Google Scholar
  56. J. Lin, C. P. Dinney, H. B. Grossman et al., “E-cadherin promoter polymorphism (C-160A) and risk of recurrence in patients with superficial bladder cancer,” Clinical Genetics, vol. 70, no. 3, pp. 240–245, 2006. View at Google Scholar
  57. C. M. Chu, C. J. Chen, D. C. Chan et al., “CDH1 polymorphisms and haplotypes in sporadic diffuse and intestinal gastric cancer: a case-control study based on direct sequencing analysis,” World Journal of Surgical Oncology, vol. 12, article 80, 2014. View at Google Scholar
  58. J. M. de Lima, L. G. de Souza, I. D. da Silva, and N. M. Forones, “E-cadherin and metalloproteinase-1 and -7 polymorphisms in colorectal cancer,” The International Journal of Biological Markers, vol. 24, no. 2, pp. 99–106, 2009. View at Google Scholar
  59. X. F. Zhang, Y. M. Wang, H. Ge et al., “Association of CDH1 single nucleotide polymorphisms with susceptibility to esophageal squamous cell carcinomas and gastric cardia carcinomas,” Diseases of the Esophagus, vol. 21, no. 1, pp. 21–29, 2008. View at Publisher · View at Google Scholar
  60. H. Ben Nasr, B. Hamrita, and M. Batbout, “A single nucleotide polymorphism in the E-cadherin gene promoter—160 C/A is associated with risk of nasopharyngeal cancer,” Clinica Chimica Acta, vol. 411, no. 17-18, pp. 1253–1257, 2010. View at Google Scholar
  61. K. Yoshida, K. Yoshihara, S. Adachi et al., “Possible involvement of the E-cadherin gene in genetic susceptibility to endometriosis,” Human Reproduction, vol. 27, no. 6, pp. 1685–1689, 2012. View at Google Scholar
  62. J. Lilien and J. Balsamo, “The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin,” Current Opinion in Cell Biology, vol. 17, no. 5, pp. 459–465, 2005. View at Google Scholar
  63. M. F. Wang, S. H. Kuo, C. H. Huang et al., “Exposure to environmental tobacco smoke, human E-cadherin C-160A polymorphism, and childhood asthma,” Annals of Allergy, Asthma & Immunology, vol. 111, no. 4, pp. 262–267, 2013. View at Publisher · View at Google Scholar
  64. M. Tan, S. Xia, Q. Zhang, J. Zhu, and E. Bao, “The -160C>a polymorphism in e-cadherin is associated with the risk of nephrolithiasis,” PLoS ONE, vol. 8, no. 9, Article ID e73109, 2013. View at Google Scholar
  65. A. C. Villani, M. Lemire, M. Thabane et al., “Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis,” Gastroenterology, vol. 138, no. 4, pp. 1502–1513, 2010. View at Google Scholar
  66. Y. Shin, I. J. Kim, and H. C. Kang, “The E-cadherin −347G->GA promoter polymorphism and its effect on transcriptional regulation,” Carcinogenesis, vol. 25, no. 6, pp. 895–899, 2004. View at Google Scholar
  67. X. P. Zou, W. J. Dai, and J. Cao, “CDH1 promoter polymorphism (−347G→GA) is a possible prognostic factor in sporadic colorectal cancer,” World Journal of Gastroenterology, vol. 15, no. 42, pp. 5340–5345, 2009. View at Publisher · View at Google Scholar
  68. B. Zhang, K. Pan, Z. Liu et al., “Genetic polymorphisms of the E-cadherin promoter and risk of sporadic gastric carcinoma in Chinese populations,” Cancer Epidemiology, Biomarkers & Prevention, vol. 17, no. 9, pp. 2402–2408, 2008. View at Publisher · View at Google Scholar
  69. Z. Zhan, J. Wu, J. F. Zhang et al., “CDH1 gene polymorphisms, plasma CDH1 levels and risk of gastric cancer in a Chinese population,” Molecular Biology Reports, vol. 39, no. 8, pp. 8107–8113, 2012. View at Google Scholar
  70. M. S. Wu, S. P. Huang, Y. T. Chang et al., “Association of the -160 C –> a promoter polymorphism of E-cadherin gene with gastric carcinoma risk,” Cancer, vol. 94, no. 5, pp. 1443–1448, 2002. View at Google Scholar
  71. M. Jenab, J. D. McKay, P. Ferrari et al., “CDH1 gene polymorphisms, smoking, Helicobacter pylori infection and the risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST),” European Journal of Cancer, vol. 44, no. 6, pp. 774–780, 2008. View at Publisher · View at Google Scholar
  72. H. Medina-Franco, A. Ramos-De la Medina, G. Medina, and J. L. Medina-Franco, “Single nucleotide polymorphisms in the promoter region of the E-cadherin gene in gastric cancer: case-control study in a young Mexican population,” Annals of Surgical Oncology, vol. 14, no. 8, pp. 2246–2249, 2007. View at Publisher · View at Google Scholar
  73. H. Yamada, K. Shinmura, S. Ikeda et al., “Association between CDH1 haplotypes and gastric cancer risk in a Japanese population,” Scandinavian Journal of Gastroenterology, vol. 42, no. 12, pp. 1479–1485, 2007. View at Publisher · View at Google Scholar
  74. B. Humar, F. Graziano, S. Cascinu et al., “Association of CDH1 haplotypes with susceptibility to sporadic diffuse gastric cancer,” Oncogene, vol. 21, no. 53, pp. 8192–8195, 2002. View at Google Scholar
  75. M. S. Al-Moundhri, M. Al-Khanbashi, M. Al-Kindi et al., “Association of E-cadherin (CDH1) gene polymorphisms and gastric cancer risk,” World Journal of Gastroenterology, vol. 16, no. 27, pp. 3432–3436, 2010. View at Google Scholar
  76. G. Corso, A. Berardi, D. Marrelli et al., “CDH1 C-160A promoter polymorphism and gastric cancer risk,” European Journal of Cancer Prevention, vol. 18, no. 1, pp. 46–49, 2009. View at Publisher · View at Google Scholar
  77. Y. Lu, Y. C. Xu, J. Shen et al., “E-cadherin gene C-160A promoter polymorphism and risk of non-cardia gastric cancer in a Chinese population,” World Journal of Gastroenterology, vol. 11, no. 1, pp. 56–60, 2005. View at Google Scholar
  78. W. S. Park, Y. G. Cho, J. Y. Park et al., “A single nucleotide polymorphism in the E-cadherin gene promoter-160 is not associated with risk of Korean gastric cancer,” Journal of Korean Medical Science, vol. 18, no. 4, pp. 501–504, 2003. View at Google Scholar
  79. P. D. Pharoah, C. Oliveira, J. C. Machado et al., “CDH1 c-160a promotor polymorphism is not associated with risk of stomach cancer,” International Journal of Cancer, vol. 101, no. 2, pp. 196–197, 2002. View at Google Scholar
  80. B. A. Jonsson, H. O. Adami, M. Hagglund et al., “-160C/A polymorphism in the E-cadherin gene promoter and risk of hereditary, familial and sporadic prostate cancer,” International Journal of Cancer, vol. 109, no. 3, pp. 348–352, 2004. View at Google Scholar
  81. T. Hajdinjak and N. Toplak, “E-cadherin polymorphism—160 C/A and prostate cancer,” International Journal of Cancer, vol. 109, no. 3, pp. 480–481, 2004. View at Google Scholar
  82. T. Goto, M. Nakano, S. Ito, H. Ehara, N. Yamamoto, and T. Deguchi, “Significance of an E-cadherin gene promoter polymorphism for risk and disease severity of prostate cancer in a Japanese population,” Urology, vol. 70, no. 1, pp. 127–130, 2007. View at Google Scholar
  83. T. Kamoto, Y. Isogawa, and Y. Shimizu, “Association of a genetic polymorphism of the E-cadherin gene with prostate cancer in a Japanese population,” Japanese Journal of Clinical Oncology, vol. 35, no. 3, pp. 158–161, 2005. View at Google Scholar
  84. S. Lindstrom, F. Wiklund, B. A. Jonsson et al., “Comprehensive genetic evaluation of common E-cadherin sequence variants and prostate cancer risk: strong confirmation of functional promoter SNP,” Human Genetics, vol. 118, no. 3-4, pp. 339–347, 2005. View at Google Scholar
  85. C. Bonilla, T. Mason, L. Long et al., “E-cadherin polymorphisms and haplotypes influence risk for prostate cancer,” Prostate, vol. 66, no. 5, pp. 546–556, 2006. View at Publisher · View at Google Scholar
  86. H. C. Li, J. M. Albert, E. T. Shinohara et al., “E-cadherin promoter polymorphisms are not associated with the aggressiveness of prostate cancer in Caucasian patients,” Urologic Oncology, vol. 24, no. 6, pp. 496–502, 2006. View at Google Scholar
  87. F. Grunhage, M. Jungck, C. Lamberti et al., “Association of familial colorectal cancer with variants in the E-cadherin (CDH1) and cyclin D1 (CCND1) genes,” International Journal of Colorectal Disease, vol. 23, no. 2, pp. 147–154, 2008. View at Google Scholar
  88. A. M. Pittman, P. Twiss, P. Broderick et al., “The CDH1-160C>A polymorphism is a risk factor for colorectal cancer,” International Journal of Cancer, vol. 125, no. 7, pp. 1622–1625, 2009. View at Publisher · View at Google Scholar
  89. T. R. Porter, F. M. Richards, R. S. Houlston, and et al, “Contribution of cyclin d1 (CCND1) and E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal cancer,” Oncogene, vol. 21, no. 12, pp. 1928–1933, 2002. View at Google Scholar
  90. Y. Fei, J. Hu, S. Liu, X. Liu, F. Wang, and J. Gong, “E-cadherin-160 C/A promoter polymorphism and risk of pancreatic carcinoma in Chinese population,” Cancer Genetics and Cytogenetics, vol. 197, no. 1, pp. 25–31, 2010. View at Publisher · View at Google Scholar
  91. Y. Li, J. Liang, S. Kang et al., “E-cadherin gene polymorphisms and haplotype associated with the occurrence of epithelial ovarian cancer in Chinese,” Gynecologic Oncology, vol. 108, no. 2, pp. 409–414, 2008. View at Google Scholar
  92. C. Ricketts, M. P. Zeegers, J. Lubinski, and E. R. Maher, “Analysis of germline variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in familial and sporadic renal cell carcinoma,” PLoS ONE, vol. 4, no. 6, Article ID e6037, 2009. View at Google Scholar
  93. G. Wang, X. Hu, C. Lu, C. Su, S. Luo, and Z. W. Luo, “Promoter-hypermethylation associated defective expression of E-cadherin in primary non-small cell lung cancer,” Lung Cancer, vol. 62, no. 2, pp. 162–172, 2008. View at Google Scholar
  94. M. H. Chien, K. T. Yeh, Y. C. Li et al., “Effects of E-cadherin (CDH1) gene promoter polymorphisms on the risk and clinicopathological development of hepatocellular carcinoma,” Journal of Surgical Oncology, vol. 104, no. 3, pp. 299–304, 2011. View at Google Scholar
  95. X. D. Li, L. M. Wu, H. Y. Xie et al., “No association exists between E-cadherin gene polymorphism and tumor recurrence in patients with hepatocellular carcinoma after transplantation,” Hepatobiliary and Pancreatic Diseases International, vol. 6, no. 3, pp. 254–258, 2007. View at Google Scholar
  96. K. Shan, M. Xiao-Wei, and W. Na, “Association of three single nucleotide polymorphisms of the E-cadherin gene with endometriosis in a Chinese population,” Reproduction, vol. 134, no. 2, pp. 373–378, 2007. View at Publisher · View at Google Scholar
  97. Y. Song and S. Zhang, “Association of CDH1 promoter polymorphism and the risk of non-syndromic orofacial clefts in a Chinese Han population,” Archives of Oral Biology, vol. 56, no. 1, pp. 68–72, 2011. View at Google Scholar