Table of Contents
Molecular Biology International
Volume 2016 (2016), Article ID 4982131, 6 pages
http://dx.doi.org/10.1155/2016/4982131
Research Article

Total Protein Profile and Drug Resistance in Candida albicans Isolated from Clinical Samples

Biotechnology Pharmacology Laboratory, Centre for Scientific Research & Development, People’s University, Bhopal 462037, India

Received 17 March 2016; Revised 29 April 2016; Accepted 5 June 2016

Academic Editor: Sharad S. Singhal

Copyright © 2016 Kamal Uddin Zaidi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Forastiero, A. C. Mesa-Arango, A. Alastruey-Izquierdo et al., “Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 10, pp. 4769–4781, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Gullo, “Invasive fungal infections: the challenge continues,” Drugs, vol. 69, pp. 65–73, 2009. View at Google Scholar · View at Scopus
  3. A. C. Sajjan, V. V. Mahalakshmi, and D. Hajare, “Prevalence and antifungal susceptibility of Candida species isolated from patients attending tertiary care hospital,” Journal of Dental and Medical Sciences, vol. 13, no. 5, pp. 44–49, 2014. View at Google Scholar
  4. E. Skrodeniene, A. Dambrauskiene, and A. Vitkauskiene, “Susceptibility of yeasts to antifungal agents in Kaunas University of Medicine Hospital,” Medicina (Kaunas, Lithuania), vol. 42, no. 4, pp. 294–299, 2006. View at Google Scholar · View at Scopus
  5. G. F. Araj, R. G. Asmar, and A. Z. Avedissian, “Candida profiles and antifungal resistance evolution over a decade in lebanon,” Journal of Infection in Developing Countries, vol. 9, no. 9, pp. 997–1003, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Malik, S. E. Hasani, M. Shahid, H. M. Khan, and A. J. Ahmad, “Nosocomial Klebsiella infection in neonates in a tertiary care hospital: protein profile by SDS-page and klebocin typing as epidemiological markers,” Indian Journal of Medical Microbiology, vol. 21, no. 2, pp. 82–86, 2003. View at Google Scholar · View at Scopus
  7. A. Malik, M. Shahid, and R. Bhargava, “Prevalence of aspergillosis in bronchogenic carcinoma,” Indian Journal of Pathology and Microbiology, vol. 46, no. 3, pp. 507–510, 2003. View at Google Scholar · View at Scopus
  8. C. C. Rodrigues, J. F. Höfling, M. F. Gomes Boriollo et al., “SDS-PAGE and numerical analysis of Candida albicans from human oral cavity and other anatomical sites,” Brazilian Journal of Microbiology, vol. 35, no. 1-2, pp. 40–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Ying, Y. Zhao, X. Hu et al., “In vitro fluconazole susceptibility of 1,903 clinical isolates of candida albicans and the identification of ERG11 mutations,” Microbial Drug Resistance, vol. 19, no. 4, pp. 266–273, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Magaldi, S. Mata-Essayag, C. H. de Capriles et al., “Well diffusion for antifungal susceptibility testing,” International Journal of Infectious Diseases, vol. 8, no. 1, pp. 39–45, 2004. View at Publisher · View at Google Scholar
  11. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  12. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  13. B. Mathema, E. Cross, E. Dun et al., “Prevalence of vaginal colonization by drug-resistant Candida species in college-age women with previous exposure to over-the-counter azole antifungals,” Clinical Infectious Diseases, vol. 33, no. 5, pp. E23–E27, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. F. De Bernardis, S. Arancia, S. Sandini, S. Graziani, and S. Norelli, “Studies of immune responses in Candida vaginitis,” Pathogens, vol. 4, no. 4, pp. 697–707, 2015. View at Publisher · View at Google Scholar
  15. M. E. Fadda, G. S. Podda, M. B. Pisano, M. Deplano, and S. Cosentino, “Prevalence of Candida species in different hospital wards and their susceptibility to antifungal agents: results of a three year survey,” Journal of Preventive Medicine and Hygiene, vol. 49, no. 2, pp. 69–74, 2008. View at Google Scholar · View at Scopus
  16. S. Hadley, J. A. Martinez, L. McDermott, B. Rapino, and D. R. Snydman, “Real-time antifungal susceptibility screening aids management of invasive yeasts infections in immunocompromised patients,” Journal of Antimicrobial Chemotherapy, vol. 49, no. 2, pp. 415–419, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Hospenthal, C. K. Murray, and M. G. Rinaldi, “The role of antifungal susceptibility testing in the therapy of candidiasis,” Diagnostic Microbiology and Infectious Disease, vol. 48, no. 3, pp. 153–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. E. M. Mokaddas, N. A. Al-Sweih, and Z. U. Khan, “Species distribution and antifungal susceptibility of Candida bloodstream isolates in Kuwait: a 10-year study,” Journal of Medical Microbiology, vol. 56, no. 2, pp. 255–259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Pfaller, “Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission,” Clinical Infectious Diseases, vol. 22, no. 2, pp. S89–S94, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. R. H. Jensen, K. M. T. Astvad, L. V. Silva et al., “Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations,” Journal of Antimicrobial Chemotherapy, vol. 70, no. 9, pp. 2551–2555, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Ostrosky-Zeichner, J. H. Rex, P. G. Pappas et al., “Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 10, pp. 3149–3154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Espinel-Ingroff, F. Barchiesi, M. Cuenca-Estrella et al., “Comparison of visual 24-hour and spectrophotometric 48-hour MICs to CLSI reference microdilution MICs of fluconazole, itraconazole, posaconazole, and voriconazole for Candida spp.: a collaborative study,” Journal of Clinical Microbiology, vol. 43, no. 9, pp. 4535–4540, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. R. Khosravi, M. Riazipour, H. Shokri, M. L. Mousavi, and M. Mahmoudi, “Characterization of the similarity of protein patterns and virulence of clinical Candida albicans isolates,” Journal of Biological Sciences, vol. 8, no. 4, pp. 760–766, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Kobayashi and H. Suginaka, “Comparison of cell wall and membrane proteins from eight Candida species,” Sabouraudia, vol. 22, no. 4, pp. 341–344, 1984. View at Publisher · View at Google Scholar · View at Scopus
  25. C. J. Jackson, D. C. Lamb, T. H. Marczylo et al., “A novel sterol 14α-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily,” Journal of Biological Chemistry, vol. 277, no. 49, pp. 46959–46965, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. A. Sagatova, M. V. Keniya, R. K. Wilson, B. C. Monk, and J. D. A. Tyndall, “Structural insights into binding of the antifungal drug fluconazole to Saccharomyces cerevisiae lanosterol 14α-demethylase,” Antimicrobial Agents and Chemotherapy, vol. 59, no. 8, pp. 4982–4989, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Song, J. B. Harry, R. T. Eastman, B. G. Oliver, and T. C. White, “The Candida albicans lanosterol 14-α-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 4, pp. 1136–1144, 2004. View at Publisher · View at Google Scholar · View at Scopus