Table of Contents Author Guidelines Submit a Manuscript
Malaria Research and Treatment
Volume 2017, Article ID 3468276, 6 pages
https://doi.org/10.1155/2017/3468276
Research Article

Major Polymorphisms of Genes Involved in Homocysteine Metabolism in Malaria Patients in Ouagadougou, Burkina Faso

1Laboratoire de Biologie Moléculaires et de Génétique (LABIOGENE), UFR-SVT, Université de Ouaga I Professeur Joseph KI-ZERBO, Ouagadougou, Burkina Faso
2Département Substances Naturelles (DSN), Institut de Recherche en Sciences Appliquées et Technologies (IRSAT), Ouagadougou, Burkina Faso
3Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
4Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Université de Lomé, Lomé, Togo

Correspondence should be addressed to Simplice Damintoti Karou; moc.liamtoh@uorakecilpmis

Received 23 February 2017; Accepted 18 April 2017; Published 18 May 2017

Academic Editor: Donatella Taramelli

Copyright © 2017 Noé Yameogo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Durand, M. Prost, and D. Blache, “Folate deficiencies and cardiovascular pathologies,” Clinical Chemistry and Laboratory Medicine, vol. 36, no. 7, pp. 419–429, 1998. View at Publisher · View at Google Scholar
  2. A. Laraqui, A. Allami, A. Carrié et al., “Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease,” Acta Cardiologica, vol. 61, no. 1, pp. 51–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Smach, S. Naffeti, B. Charfeddine et al., “Homocysteine, vitamin B-12, folic acid and the cognitive decline in the elderly,” Pathologie Biologie, vol. 61, no. 5, pp. 184–192, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Roblin, J. Pofelski, and J.-P. Zarski, “Steatosis, chronic hepatitis virus C infection and homocysteine,” Gastroenterologie Clinique et Biologique, vol. 31, no. 4, pp. 415–420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Simporè, S. Pignatelli, S. Barlati, M. Malaguarnera, and S. Musumeci, “Plasma homocysteine concentrations in a healthy population living in Burkina Faso,” Current Therapeutic Research—Clinical and Experimental, vol. 61, no. 9, pp. 659–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Simporè, S. Pignatelli, C. Meli, M. Malaguarnera, R. Chillemi, and S. Musumeci, “Nutritional and racial determinants of the increase in plasma homocysteine levels after methionine loading,” Current Therapeutic Research—Clinical and Experimental, vol. 63, no. 7, pp. 459–473, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Chillemi, J. Simpore, S. Persichilli, A. Minucci, A. D'Agata, and S. Musumeci, “Elevated levels of plasma homocysteine in postmenopausal women in Burkina Faso,” Clinical Chemistry and Laboratory Medicine, vol. 43, no. 7, pp. 765–771, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Vega-Rodríguez, B. Franke-Fayard, R. R. Dinglasan et al., “The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission,” PLoS Pathogens, vol. 5, no. 2, Article ID e1000302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E.-M. Patzewitz, E. H. Wong, and S. Müller, “Dissecting the role of glutathione biosynthesis in Plasmodium falciparum,” Molecular Microbiology, vol. 83, no. 2, pp. 304–318, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Yakub, N. Moti, S. Parveen, B. Chaudhry, I. Azam, and M. P. Iqbal, “Polymorphisms in MTHFR, MS and CBS genes and homocysteine levels in a Pakistani population,” PLoS ONE, vol. 7, no. 3, Article ID e33222, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Yang, Y. Liu, Y. Li et al., “Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms in China: findings from 15357 adults of han nationality,” PLoS ONE, vol. 8, no. 3, Article ID e57917, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. I. B. Han, O. J. Kim, J. Y. Ahn et al., “Association of methylenetetrahydrofolate reductase (MTHFR 677C>T and 1298A>C) polymorphisms and haplotypes with silent brain infarction and homocysteine levels in a Korean population,” Yonsei Medical Journal, vol. 51, no. 2, pp. 253–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Wettergren, E. Odin, G. Carlsson, and B. Gustavsson, “MTHFR, MTR, and MTRR polymorphisms in relation to p16INK4A hypermethylation in mucosa of patients with colorectal cancer,” Molecular Medicine, vol. 16, no. 9-10, pp. 425–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. E. R. Siqueira, C. P. Oliveira, M. T. Muniz, F. Silva, L. M. Pereira, and F. J. Carrilho, “Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and high plasma homocysteine in chronic hepatitis C (CHC) infected patients from the Northeast of Brazil,” Nutrition Journal, vol. 10, no. 1, article 86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Miller, D. D. Dykes, and H. F. Polesky, “A simple salting out procedure for extracting DNA from human nucleated cells,” Nucleic Acids Research, vol. 16, no. 3, article 1215, 1988. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Ouattara, C. Bisseye, B. V. Bazie et al., “Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with asymptomatic malaria in a rural community in Burkina Faso,” Asian Pacific Journal of Tropical Biomedicine, vol. 4, no. 8, pp. 655–658, 2014. View at Publisher · View at Google Scholar
  17. X. Li, Q. Liao, S. Zhang, and M. Chen, “Association of methylenetetrahytrofolate reductase (MTHFR) C677T and A1298C polymorphisms with the susceptibility of childhood acute lymphoblastic leukaemia (ALL) in Chinese population,” European Journal of Medical Research, vol. 19, no. 1, article 5, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Joachim, N. A. Goldenberg, T. J. Bernard, J. Armstrong-Wells, S. Stabler, and M. J. Manco-Johnson, “The methylenetetrahydrofolate reductase polymorphism (MTHFR c.677C > T) and elevated plasma homocysteine levels in a U.S. pediatric population with incident thromboembolism,” Thrombosis Research, vol. 132, no. 2, pp. 170–174, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. L. D. Botto and Q. Yang, “5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review,” American Journal of Epidemiology, vol. 151, no. 9, pp. 862–877, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Y. Alfarra, S. R. Alfarra, and M. F. Sadiq, “Neural tube defects between folate metabolism and genetics,” Indian Journal of Human Genetics, vol. 17, no. 3, pp. 126–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Mirgal, K. Ghosh, J. Mahanta, P. Dutta, and S. Shetty, “Possible selection of host folate pathway gene polymorphisms in patients with malaria from a malaria endemic region in North East India,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 110, no. 5, pp. 294–298, 2016. View at Publisher · View at Google Scholar · View at Scopus