Table of Contents Author Guidelines Submit a Manuscript
Neuroscience Journal
Volume 2013 (2013), Article ID 254090, 10 pages
http://dx.doi.org/10.1155/2013/254090
Clinical Study

Circadian Levels of Serum Melatonin and Cortisol in relation to Changes in Mood, Sleep, and Neurocognitive Performance, Spanning a Year of Residence in Antarctica

1National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa 403 804, India
2Department of Medicine, B.L. Taneja Block, Maulana Azad Medical College, Bahadur Shah, Zafar Marg, New Delhi 110002, India

Received 24 August 2012; Revised 1 October 2012; Accepted 17 October 2012

Academic Editor: Marcos Gabriel Frank

Copyright © 2013 Madhumita Premkumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Yoneyama, S. Hashimoto, and K. Honma, “Seasonal changes of human circadian rhythms in Antarctica,” American Journal of Physiology, vol. 277, no. 4, pp. R1091–R1097, 1999. View at Google Scholar · View at Scopus
  2. M. J. Midwinter and J. Arendt, “Adaptation of the melatonin rhythm in human subjects following night-shift work in Antarctica,” Neuroscience Letters, vol. 122, no. 2, pp. 195–198, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. J. K. Ross, J. Arendt, J. Horne, and W. Haston, “Night-shift work in Antarctica: sleep characteristics and bright light treatment,” Physiology and Behavior, vol. 57, no. 6, pp. 1169–1174, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Roberts, “Light and immunomodulation,” Annals of the New York Academy of Sciences, vol. 917, pp. 435–445, 2000. View at Google Scholar
  5. R. Leproult, E. F. Colecchia, M. L'Hermite-Balériaux, and E. Van Cauter, “Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 1, pp. 151–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Cutolo, G. J. M. Maestroni, K. Otsa et al., “Circadian melatonin and cortisol levels in rheumatoid arthritis patients in winter time: a North and South Europe comparison,” Annals of the Rheumatic Diseases, vol. 64, no. 2, pp. 212–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. L. Brown, D. Feskanich, B. N. Sánchez, K. M. Rexrode, E. S. Schernhammer, and L. D. Lisabeth, “Rotating night shift work and the sisk of ischemic stroke,” American Journal of Epidemiology, vol. 169, no. 11, pp. 1370–1377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Portaluppi and B. Lemmer, “Chronobiology and chronotherapy of ischemic heart disease,” Advanced Drug Delivery Reviews, vol. 59, no. 9-10, pp. 952–965, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. F. A. J. L. Scheer, M. F. Hilton, C. S. Mantzoros, and S. A. Shea, “Adverse metabolic and cardiovascular consequences of circadian misalignment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4453–4458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. Reiter, D. X. Tan, A. Korkmaz et al., “Light at night, chronodisruption, melatonin suppression, and cancer risk: a review,” Critical Reviews in Oncogenesis, vol. 13, no. 4, pp. 303–328, 2007. View at Google Scholar · View at Scopus
  11. K. Hu, E. J. W. Van Someren, S. A. Shea, and F. A. J. L. Scheer, “Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: involvement of the circadian pacemaker,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 8, pp. 2490–2494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Morton, N. I. Wood, M. H. Hastings, C. Hurelbrink, R. A. Barker, and E. S. Maywood, “Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease,” Journal of Neuroscience, vol. 25, no. 1, pp. 157–163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. W. Corbett, B. Middleton, and J. Arendt, “An hour of bright white light in the early morning improves performance and advances sleep and circadian phase during the Antarctic winter,” Neuroscience Letters, vol. 525, no. 2, pp. 146–151, 2012. View at Google Scholar
  14. K. Cho, “Chronic “jet lag” produces temporal lobe atrophy and spatial cognitive deficits,” Nature Neuroscience, vol. 4, no. 6, pp. 567–568, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. T. Gualtieri and L. G. Johnson, “Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs,” Archives of Clinical Neuropsychology, vol. 21, no. 7, pp. 623–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. R. Unger, R. Nisenbaum, H. Moldofsky et al., “Sleep assessment in a population-based study of chronic fatigue syndrome,” BMC Neurology, vol. 4, article. 6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Griefahn, “The validity of the temporal parameters of the daily rhythm of melatonin levels as an indicator of morningness,” Chronobiology International, vol. 19, no. 3, pp. 561–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. D. S. Tulsky, D. H. Saklofske, C. Wilkins, and L. G. Weiss, “Development of a general ability index for the wechsler adult intelligence scale-3rd edition,” Psychological Assessment, vol. 13, no. 4, pp. 566–571, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. D. M. Gill, J. R. Reddon, W. O. Stefanyk, and H. S. Hans, “Finger tapping: effects of trials and sessions,” Perceptual and Motor Skills, vol. 62, no. 2, pp. 675–678, 1986. View at Google Scholar · View at Scopus
  20. D. M. Shapiro and D. W. Harrison, “Alternate forms of the AVLT: a procedure and test of form equivalency,” Archives of Clinical Neuropsychology, vol. 5, no. 4, pp. 405–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Lemay, C. P. Bertram, and G. E. Stelmach, “Pointing to an allocentric and egocentric remembered target,” Motor Control, vol. 8, no. 1, pp. 16–32, 2004. View at Google Scholar · View at Scopus
  22. J. R. Crawford and J. D. Henry, “The Depression Anxiety Stress Scales (DASS): normative data and latent structure in a large non-clinical sample,” British Journal of Clinical Psychology, vol. 42, no. 2, pp. 111–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Hoops, S. Nazem, A. D. Siderowf et al., “Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease,” Neurology, vol. 73, no. 21, pp. 1738–1745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. B. Tornatore, E. Hill, J. A. Laboff, and M. E. McGann, “Self-administered screening for mild cognitive impairment: initial validation of a computerized test battery,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 17, no. 1, pp. 98–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. B. Reddy and J. S. O'Neill, “Healthy clocks, healthy body, healthy mind,” Trends in Cell Biology, vol. 20, no. 1, pp. 36–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Broadway and J. Arendt, “Delayed recovery of sleep and melatonin rhythms after nightshift work in Antarctic winter,” Lancet, vol. 2, no. 8510, pp. 813–814, 1986. View at Google Scholar · View at Scopus
  27. J. Owen and J. Arendt, “Melatonin suppression in human subjects by bright and dim light in Antarctia: time and season-dependent effects,” Neuroscience Letters, vol. 137, no. 2, pp. 181–184, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Harris, P. Marquis, H. R. Eriksen et al., “Diurnal rhythm in British Antarctic personnel,” Rural and Remote Health, vol. 10, no. 2, p. 1351, 2010. View at Google Scholar · View at Scopus
  29. H. Gilpin, D. Whitcomb, and K. Cho, “Atypical evening cortisol profile induces visual recognition memory deficit in healthy human subjects,” Molecular Brain, vol. 1, article 4, 2008. View at Google Scholar · View at Scopus
  30. L. K. Barger, S. W. Lockley, S. M. W. Rajaratnam, and C. P. Landrigan, “Neurobehavioral, health, and safety consequences associated with shift work in safety-sensitive professions,” Current Neurology and Neuroscience Reports, vol. 9, no. 2, pp. 155–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Preuss, “Adverse effects of chronic circadian desynchronization in animals in a “challenging” environment,” American Journal of Physiology, vol. 295, pp. R2034–R2040, 2008. View at Google Scholar
  32. S. Farrace, P. Cenni, G. Tuozzi, M. Casagrande, B. Barbarito, and A. Peri, “Endocrine and psychophysiological aspects of human adaptation to the extreme,” Physiology and Behavior, vol. 66, no. 4, pp. 613–620, 1999. View at Publisher · View at Google Scholar · View at Scopus