Table of Contents Author Guidelines Submit a Manuscript
Neuroscience Journal
Volume 2013 (2013), Article ID 839535, 8 pages
http://dx.doi.org/10.1155/2013/839535
Research Article

Age-Induced Loss of Mossy Fibre Synapses on CA3 Thorns in the CA3 Stratum Lucidum

Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

Received 29 March 2013; Accepted 19 May 2013

Academic Editor: Pasquale Striano

Copyright © 2013 Bunmi Ojo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Dhanrajan, M. A. Lynch, A. Kelly, V. I. Popov, D. A. Rusakov, and M. G. Stewart, “Expression of long-term potentiation in aged rats involves perforated synapses but dendritic spine branching results from high-frequency stimulation alone,” Hippocampus, vol. 14, no. 2, pp. 255–264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Lynch, “Analysis of the mechanisms underlying the age-related impairment in long-term potentiation in the rat,” Reviews in the Neurosciences, vol. 9, no. 3, pp. 169–201, 1998. View at Google Scholar · View at Scopus
  3. M. M. Adams, H. S. Donohue, M. C. Linville, E. A. Iversen, I. G. Newton, and J. K. Brunso-Bechtold, “Age-related synapse loss in hippocampal CA3 is not reversed by caloric restriction,” Neuroscience, vol. 171, no. 2, pp. 373–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. N. Burke and C. A. Barnes, “Neural plasticity in the ageing brain,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 30–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Driscoll, S. R. Howard, J. C. Stone et al., “The aging hippocampus: a multi-level analysis in the rat,” Neuroscience, vol. 139, no. 4, pp. 1173–1185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Geinisman, L. de Toledo-Morrell, F. Morrell, I. S. Persina, and M. Rossi, “Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased stereological dissector technique,” Hippocampus, vol. 2, no. 4, pp. 437–444, 1992. View at Google Scholar · View at Scopus
  7. Y. Geinisman, L. De Toledo-Morrell, and F. Morrell, “Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 9, pp. 3027–3031, 1986. View at Google Scholar · View at Scopus
  8. R. Griffin, R. Nally, Y. Nolan, Y. McCartney, J. Linden, and M. A. Lynch, “The age-related attenuation in long-term potentiation is associated with microglial activation,” Journal of Neurochemistry, vol. 99, no. 4, pp. 1263–1272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Ojo, P. Rezaie, P. L. Gabbott et al., “Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL,” Brain, Behavior, and Immunity, vol. 26, no. 5, pp. 778–788, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. P. R. Rapp and M. Gallagher, “Preserved neuron number in the hippocampus of aged rats with spatial learning deficits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9926–9930, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. T. D. Smith, M. M. Adams, M. Gallagher, J. H. Morrison, and P. R. Rapp, “Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats,” Journal of Neuroscience, vol. 20, no. 17, pp. 6587–6593, 2000. View at Google Scholar · View at Scopus
  12. B. Pakkenberg and H. J. Gundersen, “Neocortical neuron number in humans: effect of sex and age,” Journal of Comparative Neurology, vol. 384, pp. 312–320, 1997. View at Google Scholar
  13. C. Sandi, H. A. Davies, M. I. Cordero, J. J. Rodriguez, V. I. Popov, and M. G. Stewart, “Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training,” European Journal of Neuroscience, vol. 17, no. 11, pp. 2447–2456, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-M. Lassalle, T. Bataille, and H. Halley, “Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task,” Neurobiology of Learning and Memory, vol. 73, no. 3, pp. 243–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. M.-B. Moser, E. I. Moser, E. Forrest, P. Andersen, and R. G. M. Morris, “Spatial learning with a minislab in the dorsal hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 21, pp. 9697–9701, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Ojo, P. Rezaie, P. L. Gabbott et al., “A neural cell adhesion molecule-derived peptide, FGL, attenuates glial cell activation in the aged hippocampus,” Experimental Neurology, vol. 232, no. 2, pp. 318–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. V. I. Popov, H. A. Davies, V. V. Rogachevsky et al., “Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat,” Neuroscience, vol. 128, no. 2, pp. 251–262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. G. Stewart, H. A. Davies, C. Sandi et al., “Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities,” Neuroscience, vol. 131, no. 1, pp. 43–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Spruston, “Pyramidal neurons: dendritic structure and synaptic integration,” Nature Reviews Neuroscience, vol. 9, no. 3, pp. 206–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. V. I. Popov, N. I. Medvedev, I. V. Kraev et al., “A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study,” European Journal of Neuroscience, vol. 27, no. 2, pp. 301–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Peters, S. L. Palay, and H. D. F. Webster, The Fine Structure of the Nervous System, Oxford University Press, New York, NY, USA, 1991.
  22. W. T. Greenough, R. W. West, and T. J. DeVoogd, “Subsynaptic plate perforations: changes with age and experience in the rat,” Science, vol. 202, no. 4372, pp. 1096–1098, 1978. View at Google Scholar · View at Scopus
  23. D. C. Sterio, “The unbiased estimation of number and sizes of arbitrary particles using the disector,” Journal of Microscopy, vol. 134, no. 2, pp. 127–136, 1984. View at Google Scholar · View at Scopus
  24. M. J. West, P. D. Coleman, D. G. Flood, and J. C. Troncoso, “Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease,” The Lancet, vol. 344, no. 8925, pp. 769–772, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. B. H. Poe, C. Linville, D. R. Riddle, W. E. Sonntag, and J. K. Brunso-Bechtold, “Effects of age and insulin-like growth factor-1 on neuron and synapse numbers in area CA3 of hippocampus,” Neuroscience, vol. 107, no. 2, pp. 231–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. V. H. Perry, M. K. Matyszak, and S. Fearn, “Altered antigen expression of microglia in the aged rodent CNS,” Glia, vol. 7, no. 1, pp. 60–67, 1993. View at Google Scholar · View at Scopus
  27. K.-I. Ogura, M. Ogawa, and M. Yoshida, “Effects of ageing on microglia in the normal rat brain: immunohistochemical observations,” NeuroReport, vol. 5, no. 10, pp. 1224–1226, 1994. View at Google Scholar · View at Scopus
  28. M. A. Lynch, “The multifaceted profile of activated microglia,” Molecular Neurobiology, vol. 40, no. 2, pp. 139–156, 2009. View at Publisher · View at Google Scholar · View at Scopus