Table of Contents
New Journal of Science
Volume 2016, Article ID 5601327, 9 pages
http://dx.doi.org/10.1155/2016/5601327
Research Article

Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods

1Department of Biochemistry, Federal University Wukari, Taraba State, Nigeria
2Department of Chemical Sciences, Godfrey Okoye University, Thinkers Corner, Enugu, Nigeria

Received 26 April 2016; Revised 16 August 2016; Accepted 18 September 2016

Academic Editor: Hamid Reza Sadeghnia

Copyright © 2016 Chukwuma S. Ezeonu and Chigozie M. Ejikeme. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Sheikh, Y. Kumar, A. K. Misra, and L. Pfoze, “Phytochemical screening to validate the ethnobotanical importance of root tubers of Dioscorea species of Meghalaya, North East India,” Journal of Medicinal Plants Studies, vol. 1, no. 6, pp. 62–69, 2013. View at Google Scholar
  2. J. B. Harborne, Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, Chapman and Hall, London, UK, 1973.
  3. D. E. Okwu, “Phytochemicals and vitamin content of indigenous spices of South Eastern Nigeria,” Journal of Sustainable Agriculture and the Environment, vol. 6, pp. 30–34, 2004. View at Google Scholar
  4. C. H. Manjula and K. Ammani, “Phytochemical analysis and pharmacological importance of Sophora interrupta leaves,” International Journal of Research in Pharmaceutical and Biomedical Sciences, vol. 3, no. 4, pp. 1798–1804, 2012. View at Google Scholar
  5. O. I. Aruoma, “Free radicals, oxidative stress, and antioxidants in human health and disease,” JAOCS, Journal of the American Oil Chemists' Society, vol. 75, no. 2, pp. 199–212, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Lefer and D. N. Granger, “Oxidative stress and cardiac disease,” The American Journal of Medicine, vol. 109, no. 4, pp. 315–323, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Smith, C. A. Rottkamp, A. Nunomura, A. K. Raina, and G. Perry, “Oxidative stress in Alzheimer's disease,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1502, no. 1, pp. 139–144, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Bhatia, R. Shukla, S. V. Madhu, J. K. Gambhir, and K. M. Prabhu, “Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy,” Clinical Biochemistry, vol. 36, no. 7, pp. 557–562, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Steer, J. Millgård, D. M. Sarabi et al., “Cardiac and vascular structure and function are related to lipid peroxidation and metabolism,” Lipids, vol. 37, no. 3, pp. 231–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. R. W. J. Keay, C. F. A. Onochie, and D. P. Stanfield, Nigerian Trees, Department of Forest Research Publishers, Ibadan, Nigeria, 1964.
  11. C. M. Ejikeme, C. S. Ezeonu, and A. N. Eboatu, “Determination of physical and phytochemical constituents of some tropical timbers indigenous to Niger Delta Area of Nigeria,” European Scientific Journal, vol. 10, no. 18, pp. 247–270, 2014. View at Google Scholar
  12. A. Sofowara, Medicinal Plants and Traditional Medicine in Africa, Spectrum Books, Ibadan, Nigeria, 1993.
  13. H. Hikino, Y. Kiso, H. Wagner, and M. Fiebig, “Antihepatotoxic actions of flavonolignans from Silybum marianum fruits,” Planta Medica, vol. 50, no. 3, pp. 248–250, 1984. View at Publisher · View at Google Scholar · View at Scopus
  14. B. A. Amadi, E. N. Agomuo, and C. O. Ibegbulem, Research Methods in Biochemistry, Supreme Publishers, Owerri, Nigeria, 2004.
  15. B. A. Boham and A. R. Kocipai, “Flavonoids and condensed Tannins from Leaves of Hawaiian Vaccinium vaticulatum and V. calycinium,” Pacific Science, vol. 48, pp. 458–463, 1994. View at Google Scholar
  16. B. O. Obadoni and P. O. Ochuko, “Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta States of Nigeria,” Global Journal of Pure and Applied Sciences, vol. 8, no. 2, pp. 203–208, 2002. View at Google Scholar
  17. A. Munro and O. Bassir, “Oxalate in Nigerian vegetables,” W.A Journal of Biological and Applied Chemistry, vol. 12, no. 1, pp. 4–8, 1969. View at Google Scholar
  18. AOAC, Official Methods of Analysis, Association of Official Analytical Chemists, Washington, DC, USA, 14th edition, 1984.
  19. E. E. Itoandon, S. O. A. Olatope, and O. O. Shobowale, “Preliminary phytochemical analysis and antimicrobial properties of crude extract of Combretodendron macrocarpum stem bark,” Nigerian Food Journal, vol. 30, no. 2, pp. 51–56, 2012. View at Publisher · View at Google Scholar
  20. C. Unuigbe, H. Okeri, O. Erharuyi, E. Oghenero, and D. Obamedo, “Phytochemical and antioxidant evaluation of Moringa oleifera (Moringaceae) leaf and seed,” Journal of Pharmacy & Bioresources, vol. 11, no. 2, pp. 51–57, 2015. View at Publisher · View at Google Scholar
  21. I. M. Ahmad and A. M. Wudil, “Phytochemical screening and toxicological studies of aqueous stem bark extract of Anogeissus leiocarpus in rats,” Asian Journal of Scientific Research, vol. 6, no. 4, pp. 781–788, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Haslam, “Natural polyphenols (vegetable tannins) as drugs: possible modes of action,” Journal of Natural Products, vol. 59, no. 2, pp. 205–215, 1996. View at Google Scholar
  23. G. Würdig and R. Woller, Chemie des Weines, Eugen Ulmer, Stuttgart, Germany, 1989.
  24. J. Falbe and M. Regitz, CD RÖMPP Chemie Lexikon, Version 1.0, Georg Thieme, Stuttgart, Germany, 1995.
  25. K. Khanbabaee and T. van Ree, “Tannins: classification and definition,” Natural Product Reports, vol. 18, no. 6, pp. 641–649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Kakiuchi, M. Hattori, M. Nishizawa, T. Yamagishi, T. Okuda, and T. Namba, “Studies on dental caries prevention by traditional medicines. VIII. Inhibitory effect of various tannins on glucan synthesis by glucosyltransferase from Streptococcus mutans,” Chemical and Pharmaceutical Bulletin, vol. 34, no. 2, pp. 720–725, 1986. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Kashiwada, L. Huang, R. E. Kilkuskie, A. J. Bodner, and K.-H. Lee, “New hexahydroxydiphenyl derivatives as potent inhibitors of HIV replication in H9 lymphocytes,” Bioorganic and Medicinal Chemistry Letters, vol. 2, no. 3, pp. 235–238, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Braunwald, R. D. Bloodwell, L. I. Goldberg, and A. G. Morrow, “Studies on digitals IV observations in man on the effects of digitalis preservations on the contractility of the non-failing heart and on total vascular resistance,” Journal of Clinical Investigation, vol. 40, no. 1, pp. 52–59, 1961. View at Publisher · View at Google Scholar
  29. S. Y. Kim, J. H. Kim, S. K. Kim, M. J. Oh, and M. Y. Jung, “Antioxidant activities of selected oriental herb extracts,” Journal of the American Oil Chemists' Society, vol. 71, no. 6, pp. 633–640, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. M. G. L. Hertog, E. J. M. Feskens, P. C. H. Hollman, J. B. Katan, and D. Kromhout, “Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study,” The Lancet, vol. 342, no. 8878, pp. 1007–1011, 1993. View at Publisher · View at Google Scholar
  31. M. Z. Barakat, S. K. Shahab, N. Darwin, and E. I. Zahemy, “Determination of ascorbic acid from plants,” Analytical Biochemistry, vol. 53, pp. 225–245, 1993. View at Google Scholar
  32. C. J. Dillard and J. B. German, “Phytochemicals: nutraceuticals and human health,” Journal of the Science of Food and Agriculture, vol. 80, no. 12, pp. 1744–1756, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Haslam, Practical Polyphenolics: From Structure to Molecular Recognition and Physiological Action, Cambridge University Press, Cambridge, UK, 1998.
  34. O. A. Sodipo, J. A. Akiniyi, and U. S. Ogunbano, “Studies on certain characteristics of extracts of bark of Pausinystalia johimbe and Pausinystalia macroceras (K.Schum.) Pierre ex Beille,” Global Journal of Pure and Applied Sciences, vol. 6, no. 1, pp. 83–87, 2000. View at Google Scholar
  35. P. Kittakoop, C. Mahidol, and S. Ruchirawat, “Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation,” Current Topics in Medicinal Chemistry, vol. 14, no. 2, pp. 239–252, 2014. View at Google Scholar · View at Scopus
  36. T. P. T. Cushnie, B. Cushnie, and A. J. Lamb, “Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities,” International Journal of Antimicrobial Agents, vol. 44, no. 5, pp. 377–386, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Qiu, H. Sun, A. H. Zhang et al., “Natural alkaloids: basic aspects, biological roles, and future perspectives,” Chinese Journal of Natural Medicines, vol. 12, no. 6, pp. 401–406, 2014. View at Publisher · View at Google Scholar
  38. D. F. Rhoades, “Evolution of plant chemical defense against herbivores,” in Their Interaction with Secondary Plant Metabolites, G. A. Rosenthal and D. H. Janzen, Eds., p. 41, Academic Press, New York, NY, USA, 1979. View at Google Scholar