Table of Contents
Organic Chemistry International
Volume 2011 (2011), Article ID 835183, 4 pages
http://dx.doi.org/10.1155/2011/835183
Research Article

Tungstosilicic Acid: An Efficient and Ecofriendly Catalyst for the Conversion of Alcohols to Alkyl Iodides

1Department of Chemistry, Rasht Branch, Islamic Azad University, P.O. Box 41325-3516, Rasht, Iran
2Department of Chemistry, Science and Research Amol Branch, Islamic Azad University, P.O. Box 678, Amol, Iran

Received 12 October 2011; Accepted 15 December 2011

Academic Editor: William Ogilvie

Copyright © 2011 Masoud Mokhtary and Faranak Najafizadeh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Okuhara, N. Mizuno, and M. Misono, “Catalytic chemistry of heteropoly compounds,” Advances in Catalysis, vol. 41, no. C, pp. 113–252, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. I. V. Kozhevnikov, “Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions,” Chemical Reviews, vol. 98, no. 1, pp. 171–198, 1998. View at Google Scholar · View at Scopus
  3. M. Misono, I. Ono, G. Koyano, and A. Aoshima, “Heteropolyacids. Versatile green catalysts usable in a variety of reaction media,” Pure and Applied Chemistry, vol. 72, no. 7, pp. 1305–1311, 2000. View at Google Scholar · View at Scopus
  4. M. Misono and N. Nojiri, “Recent progress in catalytic technology in japan,” Applied Catalysis, vol. 64, pp. 1–30, 1990. View at Google Scholar · View at Scopus
  5. N. Mizuno and M. Misono, “Heterogeneous catalysis,” Chemical Reviews, vol. 98, no. 1, pp. 199–217, 1998. View at Google Scholar · View at Scopus
  6. S. Hartinger, Science of Synthesis, vol. 35, Georg Thieme, New York, NY, USA, 2007.
  7. P. J. Garegg and B. Samuelsson, “Novel reagent system for converting a hydroxy-group into an iodo-group in carbohydrates with inversion of configuration,” Journal of the Chemical Society, Chemical Communications, no. 22, pp. 978–980, 1979. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Hanessian, M. M. Ponpipom, and P. Lavallee, “Procedures for the direct replacement of primary hydroxyl groups in carbohydrates by halogen,” Carbohydrate Research, vol. 24, no. 1, pp. 45–56, 1972. View at Google Scholar · View at Scopus
  9. H. Loibner and E. Zbiral, “Reaktionen mit phosphororganischen Verbindungen. XLI [1]. Neuartige synthetische aspekte des systems triphenylphosphin-azodicarbonsäureester-hydroxyverbindung,” Helvetica Chimica Acta, vol. 59, pp. 2100–2113, 1976. View at Google Scholar
  10. H. N. Rydon, Organic Syntheses, vol. 6, pp. 830–832, 1988.
  11. N. Iranpoor, H. Firouzabadi, A. Jamalian, and F. Kazemi, “Silicaphosphine (Silphos): a filterable reagent for the conversion of alcohols and thiols to alkyl bromides and iodides,” Tetrahedron, vol. 61, no. 23, pp. 5699–5704, 2005. View at Publisher · View at Google Scholar
  12. R. Hosseinzadeh, M. Tajbakhsh, Z. Lasemi, and A. Sharifi, “Chemoselective iodination of alcohols with CeCl3·7H2O/NaI over SiO2 under microwave irradiation,” Bulletin of Korean Chemical Society, vol. 25, pp. 1143–1146, 2004. View at Google Scholar
  13. A. I. Vogel, A Text Book of Practical Organic Chemistry, Longman, 3rd edition, 1975.
  14. Dictionary of Organic Compound, Chapman & Hall, London, UK, 6th edition, 1995.
  15. J. F. Norris, “I am tring to make benzyl chloride by the direct addition of calcium hypo to toluene,” American Chemistry Journal, vol. 38, pp. 627–642, 1907. View at Google Scholar
  16. M. E. Jung and P. L. Ornstein, “A new method for the efficient conversion of alcohols into iodides via treatment with trimethylsilyl iodide,” Tetrahedron Letters, vol. 18, no. 31, pp. 2659–2662, 1977. View at Google Scholar
  17. C. Kishan Reddy and M. Periasamy, “A simple convenient procedure for iodination of alcohols and reductive iodination of carbonyl compounds using N,N-diethylaniline-borane-I,” Tetrahedron Letters, vol. 30, no. 41, pp. 5663–5664, 1989. View at Google Scholar
  18. G. A. Olah, S. C. Narang, B. G. B. Gupta, and R. Malhotra, “Synthetic methods and reactions. 62. Transformations with chlorotrimethylsilane/sodium iodide, a convenient in situ iodotrimethylsilane reagent,” Journal of Organic Chemistry, vol. 44, no. 8, pp. 1247–1251, 1979. View at Google Scholar
  19. M. Lauwers, B. Regnier, M. Van Eenoo, J. N. Denis, and A. Krief, “Diphosphorus tetraiodine (P2I4) a valuable reagent for regioselective synthesis of iodoalkanes from alcohols,” Tetrahedron Letters, vol. 20, pp. 1801–1804, 1979. View at Google Scholar
  20. R. Joseph, P. S. Pallan, A. Sudalai, and T. Ravindranathan, “Direct conversion of alcohols into the corresponding iodides,” Tetrahedron Letters, vol. 36, no. 4, pp. 609–612, 1995. View at Publisher · View at Google Scholar
  21. Y. D. Vankar and C. T. Rao, “Sodium iodide/boron trifluoride etherate: a mild reagent system for the conversion of allylic and benzylic alcohols into corresponding iodides and sulfoxides into sulfides,” Tetrahedron Letters, vol. 26, no. 22, pp. 2717–2720, 1985. View at Google Scholar
  22. M. Di Deo, E. Marcantoni, E. Torregiani et al., “A simple, efficient and general method for the conversion of alcohols into alkyl iodides by a CeCl3·7H2O/NaI system in acetonitrile,” Journal of Organic Chemistry, vol. 65, no. 9, pp. 2830–2833, 2000. View at Publisher · View at Google Scholar
  23. A. Kamal, G. Ramesh, and N. Laxman, “New halogenation reagent system for one-pot conversion of alcohols into iodides and azides,” Synthetic Communications, vol. 31, no. 6, pp. 827–833, 2001. View at Publisher · View at Google Scholar
  24. H. Tajik, F. Shirini, M. A. Zolfigol, and F. Samimi, “Convenient and efficient method for the iodination of benzylic and aliphatic alcohols by using Al(HSO4)3/KI in nonaqueous solution,” Synthetic Communications, vol. 36, no. 1, pp. 91–95, 2006. View at Publisher · View at Google Scholar
  25. G. L. Kad, J. Kaur, P. Bansal, and J. Singh, “Selective Iodination of Benzylic Alcohols with Sodium Iodide over KSF-Clay under Microwave Irradiation,” Journal of Chemical Research S, no. 4, pp. 188–189, 1996. View at Google Scholar
  26. B. P. Bandgar, V. S. Sadavarte, and S. V. Bettigeri, “Selective iodination of benzylic alcohols with KI/H2SO4, supported on natural kaolinitic clay under microwave irradiation,” Monatshefte fur Chemie, vol. 133, pp. 345–348, 2002. View at Google Scholar
  27. K. M. Khan, Zia-Ullah, S. Perveen, S. Hayat, M. Ali, and W. Voelter, “A convenient iodination method for alcohols using cesium iodide/ methanesulfonic acid and its comparison using cesium iodide/ p-toluenesulfonic acid or cesium iodide/aluminium chloride,” Natural Product Research, vol. 22, no. 14, pp. 1264–1269, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. A. R. Ellwood and M. J. Porter, “Selective conversion of alcohols into alkyl iodides using a thioiminium salt,” Journal of Organic Chemistry, vol. 74, no. 20, pp. 7982–7985, 2009. View at Publisher · View at Google Scholar · View at PubMed
  29. E. Årstad, A. G. M. Barrett, B. T. Hopkins, and J. Köbberling, “ROMPgel-supported triphenylphosphine with potential application in parallel synthesis,” Organic Letters, vol. 4, no. 11, pp. 1975–1977, 2002. View at Publisher · View at Google Scholar
  30. L. Desmaris, N. Percina, L. Cottier, and D. Sinou, “Conversion of alcohols to bromides using a fluorous phosphine,” Tetrahedron Letters, vol. 44, no. 41, pp. 7589–7591, 2003. View at Publisher · View at Google Scholar