Table of Contents
Organic Chemistry International
Volume 2014, Article ID 169803, 8 pages
http://dx.doi.org/10.1155/2014/169803
Research Article

Catalytic Synthesis of -Aminonitriles Using Nano Copper Ferrite under Green Conditions

1Department of Chemistry, Islamic Azad University, Mashhad, Iran
2Agricultural Researches and Services Center, Mashhad, Iran
3Department of Chemistry, Faculty of Science, Urmia University, 57159 Urmia, Iran
4Education Ministry, Education Organization of Razavi Khorasan, Mashhad, Iran

Received 11 November 2013; Accepted 11 December 2013; Published 12 March 2014

Academic Editor: Kazuaki Ishihara

Copyright © 2014 Ali Gharib et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. O. Duthaler, “Recent developments in the stereoselective synthesis of α-aminoacids,” Tetrahedron, vol. 50, no. 6, pp. 1539–1650, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Gröger, “Catalytic enantioselective strecker reactions and analogous syntheses,” Chemical Reviews, vol. 103, no. 8, pp. 2795–2828, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Strecker, “Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper,” Justus Liebigs Annalen der Chemie, vol. 75, no. 1, pp. 27–45, 1850. View at Publisher · View at Google Scholar
  4. A. Arasappan, S. Venkatraman, A. I. Padilla et al., “Practical and efficient method for amino acid derivatives containing β-quaternary center: application toward synthesis of hepatitis C virus NS3 serine protease inhibitors,” Tetrahedron Letters, vol. 48, no. 36, pp. 6343–6347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. R. Razafindrabe, S. Aubry, B. Bourdon, M. Andriantsiferana, S. Pellet-Rostaing, and M. Lemaire, “Synthesis of (±)-phthalascidin 650 analogue: new synthetic route to (±)-phthalascidin 622,” Tetrahedron, vol. 66, no. 46, pp. 9061–9066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. B. C. Das, J. Anguiano, and S. M. Mahalingam, “Design and synthesis of α-aminonitrile-functionalized novel retinoids,” Tetrahedron Letters, vol. 50, no. 40, pp. 5670–5672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Hatano, Y. Hattori, Y. Furuya, and K. Ishihara, “Chiral lanthanum(III)-binaphthyldisulfonate complexes for catalytic enantioselective strecker reaction,” Organic Letters, vol. 11, no. 11, pp. 2321–2324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. Kantam, K. Mahendar, B. Sreedhar, and B. M. Choudary, “Synthesis of α-amino nitriles through Strecker reaction of aldimines and ketoimines by using nanocrystalline magnesium oxide,” Tetrahedron, vol. 64, no. 15, pp. 3351–3360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Simón and J. M. Goodman, “Mechanism of BINOL-phosphoric acid-catalyzed strecker reaction of benzyl imines,” Journal of the American Chemical Society, vol. 131, no. 11, pp. 4070–4077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. G.-W. Zhang, D.-H. Zheng, J. Nie, T. Wang, and J. Ma, “Brønsted acid-catalyzed efficient Strecker reaction of ketones, amines and trimethylsilyl cyanide,” Organic and Biomolecular Chemistry, vol. 8, no. 6, pp. 1399–1405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. H. Khan, S. Agrawal, R. I. Kureshy et al., “Fe(Cp)2PF6 catalyzed efficient Strecker reactions of ketones and aldehydes under solvent-free conditions,” Tetrahedron Letters, vol. 49, no. 4, pp. 640–644, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. C. Pan and B. List, “Catalytic asymmetric three-component acyl-strecker reaction,” Organic Letters, vol. 9, no. 6, pp. 1149–1151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Jarusiewiez, Y. Choe, K. S. Yoo, C. P. Park, and K. W. Jung, “Efficient three-component strecker reaction of aldehydes/ketones via NHC-amidate palladium(II) complex catalysis,” Journal of Organic Chemistry, vol. 74, no. 7, pp. 2873–2876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Karimi, A. Maleki, D. Elhamifar, J. H. Clark, and A. J. Hunt, “Self-assembled organic-inorganic hybrid silica with ionic liquid framework: a novel support for the catalytic enantioselective Strecker reaction of imines using Yb(OTf)3-pybox catalyst,” Chemical Communications, vol. 46, no. 37, pp. 6947–6949, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Karmakar and J. Banerji, “K2PdCl4 catalyzed efficient multicomponent synthesis of α-aminonitriles in aqueous media,” Tetrahedron Letters, vol. 51, no. 20, pp. 2748–2750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. K. S. Prakash, T. Mathew, C. Panja et al., “Gallium (III) triflate catalyzed efficient Strecker reaction of ketones and their fluorinated analogs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 10, pp. 3703–3706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Wen, Y. Xiong, L. Chang, J. Huang, X. Liu, and X. Feng, “Chiral bisformamides as effective organocatalysts for the asymmetric one-pot, three-component strecker reaction,” Journal of Organic Chemistry, vol. 72, no. 20, pp. 7715–7719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Fontaine, A. Chiaroni, G. Masson, and J. Zhu, “One-pot three-component sysnthesis of α-iminonitriles by IBX/TBAB-mediated oxidative strecker reaction,” Organic Letters, vol. 10, no. 8, pp. 1509–1512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Cruz-Acosta, A. Santos-Expósito, P. de Armas, and F. García-Tellado, “Lewis base-catalyzed three-component Strecker reaction on water. An efficient manifold for the direct α-cyanoamination of ketones and aldehydes,” Chemical Communications, no. 44, pp. 6839–6841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. M. Mojtahedi, M. S. Abaee, and T. Alishiri, “Superparamagnetic iron oxide as an efficient catalyst for the one-pot, solvent-free synthesis of α-aminonitriles,” Tetrahedron Letters, vol. 50, no. 20, pp. 2322–2325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Mojtahedi, M. S. Abaee, and H. Abbasi, “Environmentally friendly room temperature strecker reaction: one-pot synthesis of α-aminonitriles in ionic liquid,” Journal of the Iranian Chemical Society, vol. 3, no. 1, pp. 93–97, 2006. View at Google Scholar · View at Scopus
  22. N. Kato, M. Suzuki, M. Kanai, and M. Shibasaki, “Catalytic enantioselective Strecker reaction of ketoimines using catalytic amount of TMSCN and stoichiometric amount of HCN,” Tetrahedron Letters, vol. 45, no. 15, pp. 3153–3155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Gruszecka, M. Soroka, and P. Mastalerz, “Preparation of D, L-phosphinothricin by Strecker reaction,” Polish Journal of Chemistry, vol. 53, pp. 937–941, 1979. View at Google Scholar
  24. E. Reimann and W. Dammertz, “Bicyclic α-amino acids, IV: synthesis of 3-(1,2,3,4-tetrahydro-1-naphthalenyl)- and 3-(5,6,7,8-tetrahydro-5-quinolinyl)alanine,” Archiv der Pharmazie, vol. 316, no. 4, pp. 297–302, 1983. View at Google Scholar · View at Scopus
  25. S. Harusawa, Y. Hamada, and T. Shioiri, “Diethyl phosphorocyanidated (DEPC). A novel reagent for the classical Strecker's α-amino nitrile synthesis,” Tetrahedron Letters, vol. 20, no. 48, pp. 4663–4666, 1979. View at Google Scholar · View at Scopus
  26. F. A. Davis, K. R. Prasad, and P. J. Carroll, “Asymmetric synthesis of polyhydroxy α-amino acids with the sulfinimine-mediated asymmetric Strecker reaction: 2-amino 2-deoxy l-xylono-1,5-lactone (polyoxamic acid lactone),” Journal of Organic Chemistry, vol. 67, no. 22, pp. 7802–7806, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Kaur, S. Pindi, W. Wever, T. Rajale, and G. Li, “Asymmetric catalytic Strecker reaction of N-phosphonyl imines with Et 2AlCN using amino alcohols and BINOLs as catalysts,” Chemical Communications, vol. 46, no. 24, pp. 4330–4332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Xie, G. Li, G. Zhao, and J. Wang, “Strecker-type reaction catalyzed by carboxylic acids in aqueous media,” Synthesis, no. 12, pp. 2035–2039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Ishitani, S. Komiyama, Y. Hasegawa, and S. Kobayashi, “Catalytic asymmetric Strecker synthesis. Preparation of enantiomerically pure α-amino acid derivatives from aldimines and tributyltin cyanide or achiral aldehydes, amines, and hydrogen cyanide using a chiral zirconium catalyst,” Journal of the American Chemical Society, vol. 122, no. 5, pp. 762–766, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. J. March, Advanced Organic Chemistry, John Wiley & Sons, New York, NY, USA, 4th edition, 1995.
  31. L. M. Weinstock, P. Davis, B. Handelsman, and R. Tull, “A general synthetic system for 1,2,5-thiadiazoles,” Journal of Organic Chemistry, vol. 32, no. 9, pp. 2823–2829, 1967. View at Google Scholar · View at Scopus
  32. W. L. Matier, D. A. Owens, W. T. Comer et al., “Antihypertensive agents. Synthesis and biological properties of 2-amino-4-aryl-2-imidazolines,” Journal of Medicinal Chemistry, vol. 16, no. 8, pp. 901–908, 1973. View at Google Scholar · View at Scopus
  33. S. Kobayashi and H. Ishitani, “Catalytic enantioselective addition to imines,” Chemical Reviews, vol. 99, no. 5, pp. 1069–1094, 1999. View at Google Scholar · View at Scopus
  34. A. T. Bell, “The impact of nanoscience on heterogeneous catalysis,” Science, vol. 299, no. 5613, pp. 1688–1691, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. L. Kantam, J. Yadav, S. Laha, P. Srinivas, B. Sreedhar, and F. Figueras, “Asymmetric hydrosilylation of ketones catalyzed by magnetically recoverable and reusable copper ferrite nanoparticles,” Journal of Organic Chemistry, vol. 74, no. 12, pp. 4608–4611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. L. N. Murhy, I. V. Kasi Viswanath, and T. K. Rao, “Nano crystalline powders of NiCu ferrite and NiCuZn ferrite prepared from citrate gel method: synthesis and characterization,” Journal of Chemistry and Chemical Engineering, vol. 3, no. 6, pp. 22–26, 2009. View at Google Scholar