Table of Contents
Physiology Journal
Volume 2013, Article ID 154327, 7 pages
Research Article

Use of Near Infrared Spectroscopy to Asses Remote Ischemic Preconditioning in Skeletal Muscle

1Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
2Division of Cardiology, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
3Applied Cachexia Research, Department of Cardiology, Charité, Campus Virchow-Klinikum, 13353 Berlin, Germany
4Department of Intensive Care Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia

Received 1 November 2012; Revised 23 January 2013; Accepted 23 January 2013

Academic Editor: Michael S. Wolin

Copyright © 2013 Jana Ambrozic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Remote ischemic preconditioning (IPC) is a procedure during which brief periods of ischemia protect distant organ from ischemia-reperfusion injury. Appling IPC on an upper arm, this phenomenon has been demonstrated in several studies. Skeletal muscle tissue oxygenation at rest (StO2) and StO2 deoxygenation rate during vascular occlusion can be measured using near infrared spectroscopy (NIRS). We aimed to investigate the effects of remote upper arm IPC on StO2 and flow-mediated dilatation (FMD) in healthy male volunteers. In a randomized controlled crossover trial, resting StO2, StO2 deoxygenation rate, and FMD were measured on testing arm at baseline and after 60 minutes. After basal measurements IPC protocol on a contralateral arm was performed. StO2 deoxygenation rate was significantly lower after remote, the IPC cycles in comparison to deoxygenation rate at baseline ( versus %, ). Comparison of deoxygenation rates showed a significant difference between the IPC and the control protocol ( , ). No differences were observed in FMD before and after remote IPC and in the control protocol. In healthy young adults, remote IPC reduces StO2 deoxygenation rate but has no significant impact on FMD. NIRS technique offers a novel approach to asses skeletal muscle adaptation in response to remote ischemic stimuli.