Table of Contents
Physiology Journal
Volume 2014 (2014), Article ID 383092, 11 pages
Clinical Study

Comparison of the Effects of Glucose and Fructose on Exercise Metabolism, Perceived Exertion, and Recovery in Untrained Females

1Faculty of Applied Health Sciences, School of Rehabilitation Science, McMaster University, 1400 Main Street W, Hamilton, ON, Canada L8S 1C7
2Queens Medical Centre, The University of Nottingham Medical School, Nottingham NG7 2UH, UK
3All Saints Surgery, Pinfold Health Centre, Field Road, Walsall WS3 3JP, UK
4ST4 Sports & Exercise Medicine, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
5Twisted Pole, Brocket Barnet Road, Arkley EN5 3JX, UK
6Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK

Received 22 September 2013; Revised 28 November 2013; Accepted 16 December 2013; Published 19 February 2014

Academic Editor: Germán Vicente-Rodriguez

Copyright © 2014 Babatunde O. Folarin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This double-blinded, crossover randomized controlled trial study was designed to establish if combined ingestion of glucose and fructose (GLU + FRU) at the moderate rate 0.5 g·min−1 would result in higher rates of carbohydrate (CHO) oxidation compared with glucose (GLU) alone. Eight untrained females (VO2max: 25.8 ± 3.2 mL·kg−1·min−1) cycled on two different occasions for 60 min at 50% of maximal power output (60% ± 1 % VO2max) and consumed 12% CHO solution of either providing 0.33 g·min−1 glucose + 0.17 g·min−1 fructose (GLU + FRUC) or 0.5 g·min−1 of glucose (GLU) alone. Heart rate (HR) and rate of perceived exertion (RPE) were assessed during exercise and subjective exercise experience assessed two days after each trial. CHO oxidation was not significantly different () between GLU + FRU and GLU (0.8 ± 0.06 g·min−1 and 0.78 ± 0.05 g·min−1, resp.). CHO oxidation rates during the final 30 min of the recovery period were not significantly different between GLU + FRU and GLU (0.17 ± 0.04 g·min−1 and 0.14 ± 0.05 g·min−1, resp.). Experience of distress was significantly higher () for GLU compared to GLU + FRU. The results reveal that consuming modest amounts of glucose plus fructose does not boost CHO oxidation above that of glucose alone during submaximal exercise.