Table of Contents
Physiology Journal
Volume 2014, Article ID 383092, 11 pages
http://dx.doi.org/10.1155/2014/383092
Clinical Study

Comparison of the Effects of Glucose and Fructose on Exercise Metabolism, Perceived Exertion, and Recovery in Untrained Females

1Faculty of Applied Health Sciences, School of Rehabilitation Science, McMaster University, 1400 Main Street W, Hamilton, ON, Canada L8S 1C7
2Queens Medical Centre, The University of Nottingham Medical School, Nottingham NG7 2UH, UK
3All Saints Surgery, Pinfold Health Centre, Field Road, Walsall WS3 3JP, UK
4ST4 Sports & Exercise Medicine, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
5Twisted Pole, Brocket Barnet Road, Arkley EN5 3JX, UK
6Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK

Received 22 September 2013; Revised 28 November 2013; Accepted 16 December 2013; Published 19 February 2014

Academic Editor: Germán Vicente-Rodriguez

Copyright © 2014 Babatunde O. Folarin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Rowlands, M. S. Thorburn, R. M. Thorp, S. Broadbent, and X. Shi, “Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1709–1719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. F. Coyle, A. R. Coggan, M. K. Hemmert, R. C. Lowe, and T. J. Walters, “Substrate useage during prolonged exercise following a preexercise meal,” Journal of Applied Physiology, vol. 59, no. 2, pp. 429–433, 1985. View at Google Scholar
  3. O. K. Tsintzas, C. Williams, L. Boobis, and P. Greenhaff, “Carbohydrate ingestion and single muscle fibre glycogen metabolism during prolonged running in men,” Journal Applied Physiology, vol. 81, no. 2, pp. 801–809, 1996. View at Google Scholar
  4. A. Casey, R. Mann, K. Bannister et al., “Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by 13C MRS,” American Journal of Physiology, EndocriNology and Metabolism, vol. 278, no. 1, pp. E65–E75, 2000. View at Google Scholar
  5. A. Jeukendrup, “Carbohydrate intake during exercise and performance,” Nutrition, no. 20, pp. 669–677, 2004. View at Google Scholar
  6. X. Shi, R. W. Summers, H. P. Schedl, S. W. Flanagan, R. Chang, and C. V. Gisolfi, “Effects of carbohydrate type and concentration and solution osmolality on water absorption,” Medicine and Science in Sports and Exercise, vol. 27, no. 12, pp. 1607–1615, 1995. View at Google Scholar · View at Scopus
  7. A. E. Jeukendrup and L. Moseley, “Multiple transportable carbohydrates enhance gastric emptying and fluid delivery,” Scandinavian Journal of Medicine and Science in Sports, vol. 20, no. 1, pp. 112–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Jeukendrup, “Carbohydrate and exercise performance: the role of multiple transportable carbohydrates,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 4, pp. 452–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. A. Wallis, C. J. Hulston, C. H. Mann, H. P. Roper, K. D. Tipton, and A. E. Jeukendrup, “Post exercise muscle glycogen synthesis with combined glucose and fructose ingestion,” Medicine and Science in Sports and Exercise, vol. 40, no. 10, pp. 1789–1794, 2008. View at Publisher · View at Google Scholar
  10. E. Adopo, F. Peronnet, D. Massicotte, G. R. Brisson, and C. Hillaire-Marcel, “Respective oxidation of exogenous glucose and fructose given in the same drink during exercise,” Journal of Applied Physiology, vol. 76, no. 3, pp. 1014–1019, 1994. View at Google Scholar
  11. R. L. Jentjens, J. Achten, and A. E. Jeukendrup, “High oxidation rates from combined carbohydrates ingested during exercise,” Medicine and Science in Sports and Exercise, vol. 36, no. 9, pp. 1551–1558, 2004. View at Google Scholar
  12. J. L. Walker, G. F. J. Heigenhauser, E. Hultman, and H. L. Spriet, “Dietary carbohydrate, muscle glycogen content and endurance performance in well-trained women,” Journal of Applied Physiology, vol. 88, no. 6, pp. 2151–2158, 2000. View at Google Scholar
  13. C. J. Hulston, G. A. Wallis, and A. E. Jeukendrup, “Exogenous CHO oxidation with glucose plus fructose intake during exercise,” Medicine and Science in Sports and Exercise, vol. 41, no. 2, pp. 357–363, 2009. View at Google Scholar
  14. E. Blaak, “Gender differences in fat metabolism,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 4, no. 6, pp. 499–502, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. J. Hamadeh, M. C. Devries, and M. A. Tarnopolsky, “Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 6, pp. 3592–3599, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. L. J. C. van Loon, A. E. Jeukendrup, W. H. M. Saris, and A. J. M. Wagenmakers, “Effect of training status on fuel selection during submaximal exercise with glucose ingestion,” Journal of Applied Physiology, vol. 87, no. 4, pp. 1413–1420, 1999. View at Google Scholar · View at Scopus
  17. W. R. Thompson, N. F. Gordon, and L. S. Pescatello, “Health-related physical fitness testing and interpretation,” in In ACSM's Guidelines for Exercise Testing and Prescription, pp. 62–68, Walters Kluver Health, Ambler, Pa, USA; Lippincott Williams & Wilkins of Durnin and Womerley, Philadelphia, Pa, USA, 8th edition, 2010. View at Google Scholar
  18. C. Bengtsson, C. Bjorkelund, L. Lapidus, and L. Lissner, “Associations of serum lipid concentrations and obesity with mortality in women: 20 year follow up of participants in prospective population study in Gothenburg, Sweden,” British Medical Journal, vol. 307, no. 6916, pp. 1385–1388, 1993. View at Google Scholar · View at Scopus
  19. J. V. Durnin and J. Womersley, “Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years,” British Journal of Nutrition, vol. 32, no. 1, pp. 79–97, 1974. View at Google Scholar · View at Scopus
  20. B. E. Ainsworth, W. L. Haskell, S. D. Herrmann et al., “2011 compendium of physical activities: a second update of codes and MET values,” Medicine and Science in Sports and Exercise, vol. 43, no. 8, pp. 2575–1581, 2011. View at Google Scholar
  21. T. W. Storer, J. A. Davis, and V. J. Caiozzo, “Accurate prediction of VO2max in cycle ergometry,” Medicine and Science in Sports and Exercise, vol. 22, no. 5, pp. 704–712, 1990. View at Google Scholar
  22. K. N. Frayn, “Calculation of substrate oxidation rates in vivo from gaseous exchange,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 55, no. 2, pp. 628–634, 1983. View at Google Scholar · View at Scopus
  23. G. Borg, “Psychophysical scaling with applications in physical work and the perception of exertion,” Scandinavian Journal of Work, Environment and Health, vol. 16, supplement 1, pp. 55–58, 1990. View at Google Scholar · View at Scopus
  24. E. McAuley and K. Courneya, “The Subjective Exercise Experience Scale (SEES): development and preliminary validation,” Journal of Sports and Exercise Psychology, vol. 16, no. 2, pp. 163–177, 1994. View at Google Scholar
  25. A. E. Jeukendrup, “Multiple transportable carbohydrates and their benefits,” Sports Science Exchange, vol. 25, no. 108, pp. 1–5, 2013. View at Google Scholar
  26. K. Currell and A. E. Jeukendrup, “Superior endurance performance with ingestion of multiple transportable carbohydrates,” Medicine and Science in Sports and Exercise, vol. 40, no. 2, pp. 275–281, 2008. View at Publisher · View at Google Scholar
  27. D. D. Rowlands, M. Swift, M. Ros, and J. G. Green, “Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance,” Applied Physiology, vol. 37, no. 3, pp. 425–438, 2012. View at Publisher · View at Google Scholar
  28. R. L. Jentjens and A. E. Jeukendrup, “High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise,” British Journal of Nutrition, vol. 93, no. 4, pp. 485–492, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Burelle, M. C. Lamoureux, F. Péronnet, D. Massicotte, and C. Laviote, “Comparison of exogenous glucose, fructose and galactose oxidation during exercise using 13C-labelling,” British Journal of Nutrition, vol. 96, no. 1, pp. 56–61, 2006. View at Google Scholar
  30. J. A. Romijn, E. F. Coyle, J. Hibbert, and R. R. Wolfe, “Comparison of indirect calorimetry and anew breath 13C/12C ratio method during strenuous exercise,” American Journal of Physiology, vol. 263, no. 1, part 1, pp. E64–E71, 1992. View at Google Scholar
  31. M. J. Tarnopolsky, “Gender differences in substrate metabolism during endurance exercise,” Canadian Journal of Applied Physiology, vol. 25, no. 4, pp. 312–327, 2000. View at Google Scholar
  32. J. L. Ivy, H. W. Goforth Jr., B. M. Damon, T. R. McCauley, E. C. Parsons, and T. B. Price, “Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement,” Journal of Applied Physiology, vol. 93, no. 4, pp. 1337–1344, 2002. View at Google Scholar · View at Scopus
  33. L. J. C. van Loon, W. H. Saris, M. Kruijshoop, and A. J. M. Wagenmakers, “Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures,” American Journal of Clinical Nutrition, vol. 72, no. 1, pp. 106–111, 2000. View at Google Scholar · View at Scopus
  34. A. E. Jeukendrup, L. Moseley, G. I. Mainwaring, S. Samuels, S. Perry, and C. H. Mann, “Exogenous carbohydrate oxidation during ultraendurance exercise,” Journal of Applied Physiology, vol. 100, no. 4, pp. 1134–1141, 2006. View at Google Scholar
  35. K. S. Hamilton, F. K. Gibbons, D. P. Bracy, D. B. Lacy, A. D. Cherrington, and D. H. Wasserman, “Effect of prior exercise on the partitioning of an intestinal glucose load between splanchnic bed and skeletal muscle,” Journal of Clinical Investigation, vol. 98, no. 1, pp. 125–135, 1996. View at Google Scholar · View at Scopus
  36. R. K. Dishman, R. P. Farquhar, and K. J. Cureton, “Responses to preferred intensities of exertion in men differing in activity levels,” Medicine and Science in Sports and Exercise, vol. 26, no. 6, pp. 783–790, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Ekkekakis and S. J. Petruzzello, “Acute aerobic exercise and affect: current status, problems, and prospects regarding dose-response,” Sports Medicine, vol. 28, no. 5, pp. 337–374, 1999. View at Publisher · View at Google Scholar
  38. M. G. Perri, S. D. Anton, P. E. Durning et al., “Adherence to exercise prescriptions: effects of prescribing moderate versus higher levels of intensity and frequency,” Health Psychology, vol. 21, no. 5, pp. 452–458, 2002. View at Google Scholar
  39. S. C. Glass and A. M. Chvala, “Preferred exerction across three common modes of exercise training,” Journal of Strength and Conditioning Research, vol. 15, no. 4, pp. 474–479, 2001. View at Google Scholar
  40. A. J. Daley and A. Welch, “Subjective exercise experiences during and after high and low intensity exercise in active and inactive adult females: some preliminary findings,” Journal of Sports Medicine and Physical Fitness, vol. 43, no. 2, pp. 220–222, 2003. View at Google Scholar · View at Scopus
  41. M. Kilpatrick, E. Hebert, J. Bartholomew, D. Hollander, and D. Stromberg, “Effect of exertional trend during cycle ergometry on postexercise affect,” Research Quarterly For Exercise and Sport, vol. 74, no. 3, pp. 353–359, 2003. View at Google Scholar
  42. R. H. Cox, T. R. Thomas, and J. E. Davis, “Positive and negative affect associated with an acute bout of aerobic exercise,” Journal of Exercise Physiology, vol. 4, no. 4, pp. 13–20, 2001. View at Google Scholar
  43. R. Thomas and S. Purdon, “Telephone methods for social surveys,” Social Research Update, vol. 8, pp. 1–7, 1994. View at Google Scholar
  44. M. Kilpatrick, J. Bartholomew, and H. Reimer, “The measurement of goal orientation in exercise,” Journal of Sports Behaviour, vol. 26, pp. 121–136, 2003. View at Google Scholar
  45. W. L. Haskell, I.-M. Lee, R. R. Pate et al., “Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association,” Circulation, vol. 116, pp. 1423–1434, 2007. View at Google Scholar