Research Letters in Physics

Volume 2009, Article ID 382578, 4 pages

http://dx.doi.org/10.1155/2009/382578

## Effect of Sm Substitution on Structural, Dielectric, and Transport Properties of PZT Ceramics

^{1}Department of Physics, Jamshedpur Co-operative College, Jamshedpur 831036, India^{2}Department of Physics, Jamshedpur Worker's College, Jamshedpur 831012, India^{3}Department of Physics and Meteorology, Indian Institute of Technology Kharagpur (I.I.T KGP), Kharagpur 721302, India

Received 24 November 2008; Accepted 1 January 2009

Academic Editor: Lian Gao

Copyright © 2009 Rajiv Ranjan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

The polycrystalline samples of (PSZT) (where ??=??0.00,??0.03,??0.06, and 0.09) were prepared by a high-temperature solid-state reaction technique. Preliminary X-ray structural analysis of the materials at room temperature has confirmed their formation in single-phase with tetragonal crystal structure. The temperature dependence of dielectric response of the samples at selected frequencies has exhibited their phase transition well above the room temperature. The variation of ac conductivity with temperature and the value of activation energy reveal that their conduction process is of mixed type (i.e., singly ionized in ferroelectric region and doubly ionized in paraelectric phase).

#### 1. Introduction

Lead
zirconate titanate (PZT) is a well-known ferroelectric material with a perovskite
ABO_{3} structure (A??=??mono or divalent and B??=??tri-hexavalent ions) [1–3]. It is widely
used for many applications such as actuators, transducers, and pyroelectric
detectors. It is a solid-state solution of ferroelectric PbTiO_{3} and
antiferroelectric PbZrO_{3} exhibiting two ferroelectric phases: a
tetragonal phase in titanium rich and a rhombohedra phase in zirconium-rich
compositions [4, 5]. The separation
line between these two phases is called morphotropic phase boundary (MPB) where
the electrical properties of the materials rise to a great extent [6]. However
above and below MPB, it has many interesting properties useful for devices.

The physical properties and device parameters of PZT-based compounds are greatly influenced by chemical substitutions, synthesis process, and some other factors. It is well observed that the La-modified PZT has tremendous applications in electronics and electro-optics [7, 8].

The literature survey on pure and modified PZT materials reveals that no systematic studies have been reported on physical properties and device parameters of Sm-substituted PZT (i.e., PSZT) with Zr/Ti ratio 45/55 [9–13]. In view of the above, we have studied the effect of samarium substitution on structural, dielectric, and ac conductivity properties of PZT (Zr/Ti: 45/55) ceramics, which is reported here.

#### 2. Experimental Details

The
polycrystalline samples of Sm-modified PZT (i.e., PSZT) (Zr_{0.45}Ti_{0.55}O_{3} (where *x*??=
0.00, 0.03, 0.06, and 0.09) were prepared by a high-temperature solid-state
reaction technique using high-purity (99.9%) oxides (i.e., PbO, ZrO_{2},
TiO_{2}, and Sm_{2}O_{3}) in a suitable
stoichiometry with 3% more PbO (to compensate lead loss at high temperatures).
The homogeneous mixed ingredients were calcined at an optimized temperature and
time (1100^{°}C, 10 hours) in an alumina crucible. The calcined powders, with small
amount of polyvinyl alcohol (PVA) as binder, were converted into pellets at a
pressure of 4??×??10^{6}?N/m^{2} using hydraulic press. These pellets were sintered
in an alumina crucible at an optimized temperature and time (1200^{°}C, 10 hours) aiming
to get nearly 97% of theoretical density.

The
X-ray diffraction (XRD) data on the calcined powders were recorded using X-ray
diffractometer (Rigaku Miniflex, Japan) with in a wide range of
Bragg’s angles () at a scanning
rate of 3^{°}/minute. The dielectric data of the materials were obtained on silver-electroded
samples using phase sensitive multimeter (PSM; Model 1735) in a wide range of
frequency (10^{2}–10^{6}?Hz) and temperature (room temperature -500^{°}C) at a potential difference of 1?V
with the stabilized temperature at an interval of 2.5^{°}C.

#### 3. Results and Discussion

##### 3.1. Structural Analysis

The
nature of room temperature XRD patterns of (Zr_{0.45}Ti_{0.55}O_{3} (PSZT) with *x*??=??0.00, 0.03, 0.06, and 0.09 (Figure 1) as compared to the reported
ones [14, 15] confirms the
formation of single phase with tetragonal crystal structure. All the reflection
peaks were indexed in tetragonal crystal system using computer software POWDMULT
[16]. On the basis of best agreement between the observed (obs) and the
calculated (cal) *d*-spacing (i.e., ), all the PSZT compounds were found to be in tetragonal crystal system
with their refined lattice parameters given in Table 1. In the XRD patterns, there
is an additional peak (for ) usually referred as secondary or
pyrochlore phase [17, 18]. Though these
peaks are undesirable, it is some time essential for formation of the
perovskites [19]. The percentage of
pyrochlore phase in PSZT for *x*??=??0.06 and 0.09 was estimated [20] as 3% and 7%,
respectively.

##### 3.2. Dielectric Study

The
variation of relative dielectric constant ()
of PSZT (having Sm contents *x*??=??0.00, 0.03, 0.06, and 0.09) with temperature at
selected frequencies (10^{3}–10^{6}?Hz) is shown in Figure 2. It is found that
decreases on increasing frequency which indicates a normal behavior of the ferroelectric
and/or dielectric materials. The higher values of
at lower frequency are due to the simultaneous presence of all types of polarizations
(space charge, dipolar, ionic, electronic, etc.) which is found to decrease with
the increase in frequency. At high frequencies (>10^{12}?Hz) electronic
polarization only exists in the materials. When temperature of PSZT samples is
increased,
first increases slowly and then rapidly up to a maximum value ().
Temperature of the material corresponding to
is called Curie or critical temperature (*T _{c}*). As at this

*T*, phase transition takes place between ferroelectric-paraelectric phases so it is also called transition temperature. At the higher temperature (=

_{c}*T*), the space charge polarization originates due to mobility of ions and imperfections in materials and thus contributes to a sharp increase in [21, 22]. The value of is found to be highest for PZT. As Sm content in PSZT increases, the value of exhibits a sharp decrease for

_{c}*x*??=??0.03, then an increase for

*x*??=??0.06, and again decrease for

*x*??=??0.09. The value of

*T*is found to be highest for PZT which decreases gradually on increasing Sm content in PSZT. However, for each PSZT samples

_{c}*T*is found to be unaffected with the change in frequency supporting the nonrelaxor behavior of Sm-modified PZT [23]. The values of and

_{c}*T*of PSZT are compared in Table 1.

_{c}The
frequency-temperature dependence of tangent loss () of PSZT is shown in Figure 2. With the increase in temperature, is found to be very low and almost remains
constant up to *T _{c}* beyond which it indicates a significant increase. The
nature of variation of at higher frequency and temperature can be
explained by space-charge polarization [23]. This decreases with the
increase in frequency as expected [24].

##### 3.3. ac Conductivity

The
ac conductivity () of PSZT for *x*??=??0.00, 0.03, 0.06, and 0.09 at
frequency 10?kHz was calculated using dielectric relation
where is the
angular frequency and
the permittivity of free space. Figure 3 shows an increasing trend of ac
conductivity around *T _{c}*. A sharp maximum in at

*T*(observed by dielectric analysis) indicates a marked dispersion which may be due to the increase in polarizability. Above

_{c}*T*, the conductivity data appears to fall on a straight line exhibiting a typical behavior of the dc component of the conductivity [23]. The linear variation of over a wide range of temperature supports the existence of thermally activated transport properties in the materials following the Arrhenius equation: where is the pre-exponential factor,

_{c}*K*the Boltzmann constant and

_{B}*E*the activation energy. The value of activation energy (

_{a}*E*) of PSZT was found to be 0.93, 0.57, 1.45, and 0.79 for

_{a}*x*??=??0.00, 0.03, 0.06, and 0.09, respectively, in the high-temperature paraelectric phase which suggests its dependence on ionization level of oxygen vacancy [25–27].

#### 4. Conclusions

Preliminary
structural analysis using room temperature X-ray diffraction data obtained from
the calcined powders of polycrystalline samples of Sm-modified PZT (i.e., (Zr_{0.45}Ti_{0.55}O_{3}) has
confirmed their tetragonal phase with the presence of a small amount of pyrochlore phase during higher concentration of Sm (3%
for *x*??=??0.06 and 7% for 0.09). Detailed study of dielectric properties of PSZT
as a function of temperature at selected frequencies has exhibited that maximum
or peak dielectric constant, tangent loss, and transition temperature are
strongly dependent on Sm content in PSZT. The electrical conductivity (ac) of
PSZT may not only due to singly ionized in low temperature (ferroelectric
phase) region but also due to doubly ionized in the high-temperature region.

#### References

- B. V. Hiremath, A. I. Kingon, and J. V. Biggers, “Reaction sequence in the formation of lead zirconate-lead titanate solid solution: role of raw materials,”
*Journal of the American Ceramic Society*, vol. 66, no. 11, pp. 790–793, 1983. View at Publisher · View at Google Scholar - T. Ohno, M. Takahashi, and N. Tsubouchi, “Perovskite formation process in Pb(Ti, Zr)${\text{O}}_{3}$ Ceramics Containing ${\text{SiO}}_{2}$,”
*Journal of the Japan Society of Powder and Powder Metallurgy*, vol. 20, no. 5, pp. 154–160, 1973. View at Google Scholar - S. S. Chandratreya, R. M. Fulrath, and J. A. Pask, “Reaction mechanisms in the formation of PZT solid solutions,”
*Journal of the American Ceramic Society*, vol. 64, no. 7, pp. 422–425, 1981. View at Publisher · View at Google Scholar - B. Jaffe, W. R. Crook, and H. Jaffe,
*Piezoelectric Ceramics*, Academic Press, New York, NY, USA, 1971. - W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, “Phenomenological study of the size effect on phase transitions in ferroelectric particles,”
*Physical Review B*, vol. 50, no. 2, pp. 698–703, 1994. View at Publisher · View at Google Scholar - S. A. Mabud, “The morphotropic phase boundary in PZT solid solutions,”
*Journal of Applied Crystallography*, vol. 13, part 3, pp. 211–216, 1980. View at Publisher · View at Google Scholar - G. H. Haertling, “Piezoelectric and electrooptic ceramics,” in
*Ceramic Materials for Electronics*, R. C. Buchanan, Ed., chapter 3, pp. 139–225, Marcel Dekker, New York, NY, USA, 1991. View at Google Scholar - B.-S. Chiou, J. N. Kuo, and H. T. Dai, “The preparation of PLZT ceramics from a sol-gel process,”
*Journal of Electronic Materials*, vol. 19, no. 4, pp. 393–397, 1990. View at Publisher · View at Google Scholar - U. Chon, K.-B. Kim, H. M. Jang, and G.-C. Yi, “Fatigue-free samarium-modified bismuth titanate (${\text{Bi}}_{4-x}{\text{Sm}}_{x}{\text{Ti}}_{3}{\text{O}}_{12}$) film capacitors having large spontaneous polarizations,”
*Applied Physics Letters*, vol. 79, no. 19, pp. 3137–3139, 2001. View at Publisher · View at Google Scholar - C. Pramila, T. C. Goel, and P. K. C. Pillai, “Investigations on the piezoelectric and structural properties of samarium-doped lead zirconate titanate ceramics,”
*Materials Science and Engineering B*, vol. 26, no. 1, pp. 25–28, 1994. View at Publisher · View at Google Scholar - S. K. Pandey, O. P. Thakur, D. K. Bhattacharya, C. Prakash, and R. Chatterjee, “Structural and electrical properties of ${\text{Sm}}^{3+}$ substituted PZT ceramics,”
*Journal of Alloys and Compounds*, vol. 468, no. 1-2, pp. 356–359, 2009. View at Publisher · View at Google Scholar - S. R. Shannigrahi and R. N. P. Choudhary, “Structural and electrical properties of sol-gel prepared Sm modified Pb$({\text{Zr}}_{0.60}{\text{Ti}}_{0.40}){\text{O}}_{3}$ ceramics,”
*British Ceramic Transactions*, vol. 101, no. 1, pp. 25–29, 2002. View at Publisher · View at Google Scholar - C. Prakash and J. K. Juneja, “Investigations on Sm- and Nb-substituted PZT ceramics,”
*Modern Physics Letters B*, vol. 20, no. 29, pp. 1879–1882, 2006. View at Publisher · View at Google Scholar - A. K. Tripathi, T. C. Goel, and C. Prakash, “Preparation of 4:55:45 samarium doped PZT films by sol-gel technique and their characterization,”
*Materials Science and Engineering B*, vol. 96, no. 1, pp. 19–23, 2002. View at Publisher · View at Google Scholar - R. Khazanchi, S. Sharma, and T. C. Goel, “Effect of rare earth Europium substitution on the microstructure, dielectric, ferroelectric and pyroelectric properties of PZT ceramics,”
*Journal of Electroceramics*, vol. 14, no. 2, pp. 113–118, 2005. View at Publisher · View at Google Scholar - E. Wu, “POWDMULT: an interactive powder diffraction data interpretation and indexing programmed version 2.1,” School of Physical Sciences, Flinder University of South Australia Bradford Park, SA, and Australia.
- S. R. Shannigrahi, R. N. P. Choudhary, and H. N. Acharya, “X-ray, SEM and dielectric studies of Gd-modified sol-gel-prepared lead zirconate-lead titanate solid solution,”
*Materials Letters*, vol. 39, no. 6, pp. 318–323, 1999. View at Publisher · View at Google Scholar - J. Lian, L. Wang, J. Chen et al., “The order-disorder transition in ion-irradiated pyrochlore,”
*Acta Materialia*, vol. 51, no. 5, pp. 1493–1502, 2003. View at Publisher · View at Google Scholar - A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin films,”
*Journal of the American Ceramic Society*, vol. 74, no. 6, pp. 1455–1458, 1991. View at Publisher · View at Google Scholar - S. L. Swartz and T. R. Shrout, “Fabrication of perovskite lead magnesium niobate,”
*Materials Research Bulletin*, vol. 17, no. 10, pp. 1245–1250, 1982. View at Publisher · View at Google Scholar - J. C. Anderson, in
*Dielectrics*, Chapman & Hall, London, UK, 1964. - C. J. F. Bottchar,
*Theory of Electric Polarization*, Elsevier, Amsterdam, The Netherlands, 1952. - M. E. Lines and A. M. Glass,
*Principles and Applications of Ferroelectrics and Related Materials*, Oxford University Press, London, UK, 1977. - S. R. Shannigrahi, F. E. H. Tay, K. Yao, and R. N. P. Choudhary, “Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) ion substitutions on the microstructural and electrical properties of sol-gel grown PZT ceramics,”
*Journal of the European Ceramic Society*, vol. 24, no. 1, pp. 163–170, 2004. View at Publisher · View at Google Scholar - C. Ang, Z. Yu, and L. E. Cross, “Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTi${\text{O}}_{3}$,”
*Physical Review B*, vol. 62, no. 1, pp. 228–236, 2000. View at Publisher · View at Google Scholar - G. Deng, G. Li, A. Ding, and Q. Yin, “Evidence for oxygen vacancy inducing spontaneous normal-relaxor transition in complex perovskite ferroelectrics,”
*Applied Physics Letters*, vol. 87, no. 19, Article ID 192905, 3 pages, 2005. View at Publisher · View at Google Scholar - A. Molak, E. Talik, M. Kruczek, M. Paluch, A. Ratuszna, and Z. Ujma, “Characterisation of Pb(${\text{Mn}}_{1/3}{\text{Nb}}_{2/3}$)${\text{O}}_{3}$ ceramics by SEM, XRD, XPS and dielectric permittivity tests,”
*Materials Science and Engineering B*, vol. 128, no. 1–3, pp. 16–24, 2006. View at Publisher · View at Google Scholar