Table of Contents
Physics Research International
Volume 2011 (2011), Article ID 796318, 7 pages
Research Article

Target and PADC Track Detectors for Rare Isotope Studies

1Laboratorio de Física Nuclear, Universidad Simón Bolivar, 1080A Caracas, Venezuela
2Laboratori Nazionali di Legnaro, INFN, Viale Universita 2, I-35020 Legnaro (Padova), Italy
3Hungarian Academy of Sciences KFKI Atomic Energy Research Institute, 1525 Budapest, Hungary

Received 7 September 2010; Revised 2 February 2011; Accepted 9 March 2011

Academic Editor: Faustino Aguilera-Granja

Copyright © 2011 J. Bermudez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A higher yield of rare isotope production methods, for example, isotope separation on-line (ISOL), is expected to be developed for the EURISOL facility. In this paper as a part of the ongoing project, high power-target assembly and passive detector inclusion are given. Theoretical calculations of several configurations were done using Monte Carlo code FLUKA aimed to produce 1015 fiss/s on LEU-Cx target. The proposed radioactive ion beam (RIB) production relies on a high-power (4 MW) multibody target; a complete target design is given. Additionally we explore the possibility to employ PADC passive detector as a complementary system for RIB characterization, since these already demonstrated their importance in nuclear interactions phenomenology. In fact, information and recording rare and complex reaction product or short-lived isotope detection is obtained in an integral form through latent track formation. Some technical details on track formation and PADC detector etching conditions complete this study.